Skip to main content
Log in

DFT calculations of structural and electronic features for mono and dual Pb-doped models of graphene

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Mono and dual lead (Pb)-doped models of graphene were investigated in this work by means of performing density functional theory (DFT) calculations. Coronene was considered in this work as a representative structure of graphene in a molecular scale. For dual Pb-doped models, two conformations of Cis and Trans were investigated by putting two Pb atoms at the same side of graphene in the Cis model and locating two Pb atoms at the opposite sides in the Trans model. The models were optimized to obtain the minimized energy structures, which were confirmed by the evaluated non-imaginary frequencies. Molecular and atomic features were obtained to recognize the effects of Pb dopant on structural and electronic features of graphene for making a comparison for the investigated models. As the main achievements of this work, the models were successfully optimized by better benefits of formation of the Cis model in comparison with the other models. Based on the evaluated electronic features, developments of further applications could be expected for such models systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S A Younis, H A Maitlo, J Lee and K H Kim Adv. Colloid Interface Sci. 275 102071 (2020)

    Article  Google Scholar 

  2. N H Tran, B H Le, S Zhao and Z Mi Appl. Phys. Lett. 110 032102 (2017)

    Article  ADS  Google Scholar 

  3. S He et al. J. Colloid Interface Sci. 582 90 (2021)

    Article  ADS  Google Scholar 

  4. Q Ji, C Hu, H Liu and J Qu Chem. Eng. J. 350 608 (2018)

    Article  Google Scholar 

  5. Z Yang, J Tian, Z Yin, C Cui, W Qian and F Wei Carbon 141 467 (2019)

    Article  Google Scholar 

  6. A G Fedorov and A I P Conf AIP Conf. Proc. 2041 040004 (2018)

    Article  Google Scholar 

  7. G Yang and L Li Technol. Adv. Mater. 19 613 (2018)

    Article  Google Scholar 

  8. J Xu et al. Chemosphere 195 351 (2018)

    Article  ADS  Google Scholar 

  9. M Zhang et al. Chemosphere 253 126638 (2020)

    Article  ADS  Google Scholar 

  10. N Promthong and C Tabtimsai Chem. 31 2237 (2020)

    Google Scholar 

  11. W Tian, W Li, W Yu and X Liu Micromachines 8 163 (2017)

    Article  Google Scholar 

  12. D Huang, J Wu, L Wang, X Liu, J Meng and X Tang Eng. J. 358 1399 (2019)

    Google Scholar 

  13. Z Li et al. Adv. Mater. 2100793 (2021)

  14. R Chen et al. Sci. Total Environ. 756 143871 (2021)

    Article  ADS  Google Scholar 

  15. X Zhang and Y Tang Energy Mater. 6 1502588 (2016)

    Article  Google Scholar 

  16. M Zhang, X Song, X Ou and Y Tang Energy Storage Mater. 16 65 (2019)

    Article  Google Scholar 

  17. K Yang, Q Liu, Y Zheng and H Yin Chem. 60 6326 (2021)

    Google Scholar 

  18. H Cheng, T Li, X Li, J Feng, T Tang and D Qin J. Electrochem. Soc. 168 087504 (2021)

    Article  ADS  Google Scholar 

  19. G Luo et al. Nanotechnology 32 405402 (2021)

    Article  ADS  Google Scholar 

  20. S Ariaei and F Fallahpour J. Sci. Eng. 2 18 (2021)

    Google Scholar 

  21. X Yang, N Guo, Y Yu, H Li, H Xia and H Yu J. Environ. Manage. 256 109943 (2020)

    Article  Google Scholar 

  22. B S Boruah Fiber Technol. 46 125 (2018)

    Article  Google Scholar 

  23. J Ma, Y Sun, M Zhang, M Yang and X Gong Sci. Technol. 51 12283 (2017)

    Article  Google Scholar 

  24. K Thakur and B Kandasubramanian J. Chem. Eng. Data 64 833 (2019)

    Article  Google Scholar 

  25. Y Shao et al. Nano Lett. 18 2133 (2018)

    Article  ADS  Google Scholar 

  26. K Harismah, M Mirzaei and R Moradi Z. Naturforsch. A 73 685 (2018)

    Article  ADS  Google Scholar 

  27. E Moezi and M Mirzaei Lab-in-Silico 2 25 (2021)

    Google Scholar 

  28. E Fawcett and J Trotter Proc. R. Soc. Lond. 289 366 (1966)

    ADS  Google Scholar 

  29. R Dong et al. J. Am. Chem. Soc. 139 2168 (2017)

    Article  Google Scholar 

  30. M Mirzaei Naturforsch. A 62 56 (2007)

    Article  ADS  Google Scholar 

  31. M Sherafati, A S Rad, M Ardjmand and A Heydarinasab Appl. Phys. 18 1059 (2018)

    ADS  Google Scholar 

  32. A S Rad and A Mirabi J. Phy. 95 958 (2017)

    Google Scholar 

  33. Q Yang, Z Li, X Lu and Q Duan Total Environ. 642 690 (2018)

    Article  Google Scholar 

  34. J M Jacob, C Karthik, R G Saratale, S S Kumar and D Prabakar J. Environ. Manage. 217 56 (2018)

    Article  Google Scholar 

  35. P Matczak Theor. Chem. 983 25 (2012)

    Article  Google Scholar 

  36. M Frisch et al., Gaussian 09 (Wallingford, CT: Gaussian Inc.) (2009)

  37. A Bodaghi, M Mirzaei, A Seif and M Giahi Phys. E: Low-Dimens. Syst. Nanostructures 41 209 (2008)

    Article  ADS  Google Scholar 

  38. F Fallahpour and S Ariaei Adv. J. Sci. Eng. 2 31 (2021)

    Google Scholar 

  39. A Ghanadzadeh-Gilani, V Taghvaei, E Moradi-Rufchahi and M Mirzaei Spectrochim. Acta A. Mol. Biomol Spectrosc. 185 111 (2017)

    Article  ADS  Google Scholar 

  40. J Moon, Z Huang, W Wu and S Oh Phys. Rev. Mater. 4 024203 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Khalid Hadi Mahdi Aal-Shabeeb for a very fruitful discussion on the calculation and also for editing the final text of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Majeed Haider Al-Haideri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Haideri, L.M.H., Cakmak, N. DFT calculations of structural and electronic features for mono and dual Pb-doped models of graphene. Indian J Phys 96, 2795–2800 (2022). https://doi.org/10.1007/s12648-021-02223-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02223-w

Keywords

Navigation