Skip to main content
Log in

THz emission with X-mode laser pulses

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We propose to investigate the THz emission using laser–plasma interaction, when two X-mode lasers beat and interact with inhomogeneous plasmas. Pulse steepness varies from slow rise and fall to the steep rise and steep fall in spatial electric field envelope as Gaussian pulse changes into non-Gaussian (triangular and round triangular) laser pulse. X-mode of Gaussian (G), round triangular (RT) and triangular (T) laser pulses are used to investigate the THz emission. THz amplitude varies with magnetic field, transverse distance and resonance frequency. THz radiation intensifies and attains peak value at resonance condition. For exact phase matching condition, THz efficiency of the order of \({10}^{-4}\) can be achieved for Gaussian pulses. X-mode lasers are more favourable to produce high-amplitude THz radiations in comparison with ordinary laser mode. Present study concludes that Gaussian and non-Gaussian laser pulses influence THz emission differently in ordinary and extraordinary laser modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D Dragoman and M Dragoman Prog. Quantum Electron. 28 1 (2004)

    Article  ADS  Google Scholar 

  2. B Ferguson and X C Zhang Nat. Mater. 1 26 (2002)

    Article  ADS  Google Scholar 

  3. Z D Taylor et al IEEE Trans. THz Sci. Tech. 1 201 (2011)

    Article  Google Scholar 

  4. R A Lewis J. Phys. D Appl. Phys. 47 374001 (2014)

    Article  Google Scholar 

  5. M Nagai, E Matsubara and M Ashida IEEE Trans. THz Sci. Tech. 4 440 (2014)

    Article  Google Scholar 

  6. H Hamster and A Sullivan IEEE Trans. Plasma Sci. Phys. Rev. E 49 671 (1994)

    Google Scholar 

  7. L Bhasin and V K Tripathi Phys. Plasmas 16 103105 (2009)

  8. Z Wu et al Rev. Sci. Instrum. 84 2701 (2013)

    Google Scholar 

  9. A Houard, Y Liu, B Prade, V T Tikhonchuk and A Mysyrowicz Phys. Rev. Lett. 100 255006 (2008)

  10. A G Stepanov Phys. Lett. 83 3000 (2003)

    Google Scholar 

  11. A G Stepanov Appl. Phys. B 81 23 (2005)

    Article  ADS  Google Scholar 

  12. K Y Kim, A Taylor, J Glownia and G Rodriguez Nat. Photon. 2 605 (2008)

  13. H Hamster, A Sullivan and S Gordon Phys. Rev. Lett. 71 2725 (1993)

    Article  ADS  Google Scholar 

  14. Z M Sheng, K Mima, J Zhang and H Sanuki Phys. Rev. Lett. 94 095003 (2005)

  15. Z M Sheng, K Mima and J Zhang Phys. Plasmas. 12 123103 (2005)

  16. J Yoshii, C H Lai and T Katsouleas Phys. Rev. Lett. 79 4194 (1997)

    Article  ADS  Google Scholar 

  17. G Brodin and J Lundberg Phys. Rev. E 57 7041 (1998)

    Article  ADS  Google Scholar 

  18. M Singh and R P Sharma Contrib. Plasma Phys. 53 540 (2013)

    Article  ADS  Google Scholar 

  19. P Varshney, A Upadhayay and K Madhubabu Laser Part. Beams 36 236 (2018)

    Article  ADS  Google Scholar 

  20. D Singh and H K Malik Phys. Plasmas. 21 083105 (2014)

  21. M H Cho, Y K Kim, H Suk, B Ersfeld, D A Jaroszynski and M.S Hur New J. Phys. 17 043045 (2015)

  22. I Babushkin et al. Phys. Rev. Lett. 105 053903 (2010)

  23. S Saxena, S Bagchi, B S Rao, P A Naik and J A Chakera IEEE Trans. Terahertz Sci. Technol. 8 528 (2018)

  24. K Gopal, D N Gupta and H Suk IEEE Trans. Plasma Sci. 49 1152 (2021)

  25. K Gopal, D N Gupta, A Jain, M H Hur and H Suk Current Appl. Phys. 25 82(2021)

  26. G L Carr, M C Martin, W R McKinney, K Jordan, G R Neil and G P Williams Nature 420 153 (2002)

  27. C Li et al Opt. Express 22 11797 (2014)

    Article  ADS  Google Scholar 

  28. A Sagisaka et al Appl. Phys. B 90 373 (2008)

    Article  ADS  Google Scholar 

  29. A Gopal et al Opt. Lett. 38 4705 (2013)

    Article  ADS  Google Scholar 

  30. M C Gurjar, K Gopal, D N Gupta, V V Kulagin and H Suk IEEE Trans. Plasma Sci. 48 3727 (2020)

  31. M C Gurjar, K Gopal, D N Gupta and V V Kulagin Euro Phys. Lett. 13314001(2021)

  32. P Varshney, K Gopal and A Upadhyaay Laser Phys. Lett. 17 126002 (2020)

  33. D N Gupta and A Jain Optik 227 165824 (2021)

  34. C H Pai et al. Phys. Plasmas 12 070707 (2005)

  35. R Gill and H K Malik Phys. Lett. A 383 2891 (2019)

    Article  ADS  Google Scholar 

  36. K Gopal, M A Raja and D N Gupta Indian J. Phys. 92 919 (2018)

    Article  ADS  Google Scholar 

  37. K Gopal, D N Gupta, Y K Kim, M S Hur, and H Suk J. Appl. Phys. 119 123101 (2016)

  38. R K Singh, M Singh, S K Rajouria, and R P Sharma Phys. Plasmas 24 103103 (2017)

  39. T M Antonsen Jr, J Palastra, H M Milchberg Phys. Plasmas 14 033107 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuj Vijay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushplata, Varshney, P., Gopal, K. et al. THz emission with X-mode laser pulses. Indian J Phys 96, 3015–3022 (2022). https://doi.org/10.1007/s12648-021-02219-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02219-6

Keywords

Navigation