Skip to main content
Log in

The mechanical property of carbon nanocoil

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Benefiting from their unique nanoscale spiral morphology and large aspect ratio, carbon nanocoils (CNCs) show outstanding stretchable ability and vibratory property. Based on material mechanics, the quantitative relationships between the elastic coefficient and lateral stiffness of CNCs and their geometric parameters are revealed. Moreover, it is found that the crystallinity of CNCs plays an important role on their mechanical properties, which is confirmed by Raman spectroscopy test. The theoretical derivation and experimental analysis on the mechanical property of CNCs provide a foundation for their synthesis regulation and potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J Pan, F R Li and J H Choi J. Mater. Chem. B 5 6511 (2017)

    Article  Google Scholar 

  2. M Y Zhang and J T W Yeow Acs Appl. Mater. Interfaces 10 26604 (2018)

    Article  Google Scholar 

  3. S H Su, J L Wang, J H Wei, R Martinez-Zaguilan, J J Qiu and S R Wang New J. Chem. 39 5743 (2015)

    Article  Google Scholar 

  4. M Zhang, W T Wang, F Wu, P Yuan, C Chi and N L Zhou Carbon 123 70 (2017)

    Article  Google Scholar 

  5. F Yi et al. Energy Environ. Sci. 11 2016 (2018)

  6. C W Li et al. Nanoscale 10 14966 (2018)

  7. H Park, J Park, A K L Lim, E H Anderson, A P Alivisatos and P L McEuen Nature 407 57 (2000)

    Article  ADS  Google Scholar 

  8. B Y Tian et al. Nanoscale 9 4388 (2017)

  9. M Yu, H C Wan, L Cai, J S Miao, S M Zhang and C Wang Acs. Nano. 12 11572 (2018)

    Article  Google Scholar 

  10. J Zhao, J-W Jiang, Y Jia, W Guo and T Rabczuk Carbon 57 108 (2013)

    Article  Google Scholar 

  11. J T Lv, L J Pan, H Ma, D W Li, and S Pan (2010) 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Smart Structures and Materials in Manufacturing and Testing 7659 7659051

  12. T Hayashida, L Pan and Y Nakayama Physica. B 323 352 (2002)

    Article  ADS  Google Scholar 

  13. H Ma, L J Pan, Q Zhao and W Peng Nanoscale 5 1153 (2013)

    Article  ADS  Google Scholar 

  14. P Wang, L J Pan, C W Li and J Zheng J. Phys. Chem. C 122 27696 (2018)

    Article  Google Scholar 

  15. R X Cui, L J Pan and C H Deng Carbon 89 47 (2015)

    Article  Google Scholar 

  16. X Fu, L J Pan, Q Wang, C Y Liu, Y M Sun, M Asif, J Qin and Y Y Huang Carbon 99 43 (2016)

    Article  Google Scholar 

  17. Y Zhao et al Nano-Micro Lett. 12 23 (2020)

    Article  ADS  Google Scholar 

  18. H J Shen J. Mech. Strength 30 195 (2008)

    Google Scholar 

  19. H J Shen J. Mater. Sci. Eng. 27 661 (2009)

    Google Scholar 

  20. A Volodin, M Ahlskog, E Seynaeve, C Van Haesendonck, A Fonseca and J B Nagy Phys. Rev. Lett. 84 3342 (2000)

    Article  ADS  Google Scholar 

  21. A Volodin, D Buntinx, M Ahlskog, A Fonseca, J B Nagy and C Van Haesendonck Nano. Lett. 4 1775 (2004)

    Article  ADS  Google Scholar 

  22. A Volodin, C Van Haesendonck, R Tarkiainen, M Ahlskog, A Fonseca and J B Nagy Appl. Phys. A-Mater. 72 S75 (2001)

    Article  Google Scholar 

  23. T Yonemura, Y Suda, H Tanoue, H Takikawa, H Ue, K Shimizu and Y Umeda J. Appl. Phys. 112 084311 (2012)

    Article  ADS  Google Scholar 

  24. C H Deng, L J Pan, H Ma and R X Cui Carbon 81 758 (2015)

    Article  Google Scholar 

  25. D Saini et al. Sci. Rep. 4 1 (2014)

  26. P Wang, L J Pan, C W Li and J Zheng Nano 13 1850112 (2018)

    Article  Google Scholar 

  27. C Yudong, Structural vibration analysis (Jilin University Press, 2008)

  28. T Hayashida, L Pan and Y Nakayama Phys. B: Condensed Matt. 323 352 (2002)

    Article  ADS  Google Scholar 

  29. P Wang, L J Pan, C H Deng and C W Li Jpn. J. Appl. Phys. 55 118001 (2016)

    Article  ADS  Google Scholar 

  30. R X Cui, L J Pan, D W Li, H Ma and W Peng Carbon 76 455 (2014)

    Article  Google Scholar 

  31. C H Deng et al. Acs Nano. 10 9710 (2016)

  32. H Ma, K Nakata, L J Pan, K Hirahara and Y Nakayama Carbon 73 71 (2014)

    Article  Google Scholar 

  33. Y M Sun, C W Wang, L J Pan, X Fu, P H Yin and H L Zou Carbon 98 285 (2016)

    Article  Google Scholar 

  34. X Fu, L J Pan, D W Li, N Zhou and Y M Sun Carbon 93 361 (2015)

    Article  Google Scholar 

  35. K Hirahara, K Nakata and Y Nakayama Mat. Sci. Eng. A 595 205 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2020L0538) and Science Research Project Fund of Xinzhou Teachers University (No. 2019KY06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Wang, Q.L. The mechanical property of carbon nanocoil. Indian J Phys 96, 2747–2753 (2022). https://doi.org/10.1007/s12648-021-02202-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02202-1

Keywords

Navigation