Skip to main content
Log in

Studies on alpha, cluster and halo emissions from Z = 128–132 superheavy nuclei leading to doubly magic 310126 daughter nuclei

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Alpha, cluster and halo emissions from Z = 128–132 superheavy nuclei have been studied within the framework of the Coulomb and Proximity Potential Model to verify the existence of an island of stability at 310126. The Q values are computed using the WS4 model, table of KTUY, and FRDM (2012). The results of our calculations are then compared with predictions of other phenomenological models; Universal Decay Law (UDL) of Qi et al., scaling law by Horoi et al., Unified Description formula (UD) of Ni et al., and universal curve (UNIV) of Poenaru et al. The CPPM and other phenomenological models predict the neutron shell closure at N = 184. The proton magicity at Z = 126 is verified by computing the alpha decay half-lives of isotones of superheavy elements Z = 114–130 with N = 196. Possibility for the neutron shell closure at N = 194, 196, 200, 212, and 218 has also been identified from the plots of \(\log_{10} T_{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}}\) verses the neutron number of daughter nuclei. Based on our calculations, a new island of stability beyond 298114 has been identified at 310126.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y T Oganessian et al J. Phys. G 34 R165 (2007)

    Article  ADS  Google Scholar 

  2. Y T Oganessian and V K Utyonkov Nucl. Phys. A 944 62 (2015)

    Article  ADS  Google Scholar 

  3. Y T Oganessian et al Nucl. Phys. A 734 109 (2004)

    Article  ADS  Google Scholar 

  4. M A Stoyer Nature 442 7105 876 (2006)

  5. J Grumann and U Mosel Phys. 228 371 (1969)

    Google Scholar 

  6. S Nilsson Lett. B 28 458 (1969)

    Article  ADS  Google Scholar 

  7. E O Fiset and J R Nix Nucl. Phys. A 193 647 (1972)

    Article  ADS  Google Scholar 

  8. J Randrup, S E Larsson, P Möller and A Sobiezewski Scr. 10A 60 (1974)

    Google Scholar 

  9. U Mosel and W Greiner Z. Phys. 222 261 (1969)

    Article  ADS  Google Scholar 

  10. S G Nilsson et al. Nucl. Phys. A 131 1 (1969)

  11. P. Möller and J. R. Nix Nucl. Phys. A 549 84 (1992)

  12. V Y Denisov Phys. At. Nucl. 68 1133 (2005)

    Article  Google Scholar 

  13. M Bender, K Rutz, P-G. Reinhard, J A Maruhn and W Greiner Phys. Rev. C 60 034304 (1999)

  14. W Zhang, J Meng and S Zhang Phys. A 753 106 (2005)

    Article  Google Scholar 

  15. A T Kruppa, M Bender, W Nazarewicz, P -G. Reinhard, T Vertse and S Cwiok Phys. Rev. C 61 034313 (2000)

  16. G Andersson, S E Larsson, G Leander, S G Nilsson, Ragnarsson and S Aberg R. Phys. Lett. 65 (B) 3 (1976)

  17. S Cwiok and J Dobaczewski Phys. A 611 211 (1996)

    Google Scholar 

  18. R K Gupta, Niyti, M Manhas and W Greiner J. Phys. G 36 115105 (2009)

  19. Yibin Qian and Zhongzhou Ren Phys Rev. C 100 061302(R) (2019)

    Google Scholar 

  20. S Liran, A Marinov, and N Zeldes Phys. Rev. C 62 047301 (2000)

  21. Yibin Qian and Zhongzhou Ren Phys. Rev. C 90 064308 (2014)

  22. A Sandulescu J. Part. and Nucl. Phys. 11 528 (1980)

    Google Scholar 

  23. H J Rose and G A Jones Nature 307 245 (1984)

    Article  ADS  Google Scholar 

  24. M Warda and A Zdeb Rev. C 98 041602(R) (2018)

    Google Scholar 

  25. D N Poenaru and W Greiner Lect. Notes Phys. 1 (2010)

  26. Y L Zhang and Y Z Wang Phys. Rev. C 97 014318 (2018)

  27. K P Santhosh and C Nithya Phys. Rev. C 97 064616 (2018)

  28. I Tanihata et al Phys. Rev. Lett. 55 2676 (1985)

    Article  ADS  Google Scholar 

  29. J Al-Khalili Lect. Notes Phys. 651 77 (2004)

  30. T Suzuki, T Otsuka, C Yuan and N Alahari Phys. Lett. B. 753 (2016)

  31. M Takechi et al Phys. Rev C 90 061305(R) (2014)

    Article  ADS  Google Scholar 

  32. I Hamamoto Phys. Rev. C 95 044325 (2017)

  33. Y J Shi and W J Swiatecki Nucl. Phys. A 438 450 (1985)

    Article  ADS  Google Scholar 

  34. J Blocki, J Randrup, W J Swiatecki and C F Tsang Ann. Phys. (NY) 105 427 (1977)

  35. J Blocki and W J Swiatecki Ann. Phys. (NY) 132 53 (1981)

    Article  ADS  Google Scholar 

  36. D N Poenaru and M Ivascu Rev. C 32 572 (1985)

    Google Scholar 

  37. C Qi, F R Xu, R J Liotta, R Wyss, M Y Zhang, C Asawatangtrakuldee and D Hu Phys. Rev. C 80 044326 (2009).

  38. M Horoi, A Brown, A Sandulescu, arXiv:nucl-th/9403008v1 (1994)

  39. Dongdong Ni, Zhongzhou Ren, Tiekuang Dong and Chang Xu Phys. Rev. C 78 044310 (2008)

  40. D N Poenaru, R A Gherghescu and W Greiner Phys. Rev. C 83 014601 (2011)

  41. D N Poenaru and W Greiner J. Phys. G: Nucl. Part. Phys. 17 443 (1991)

    Article  ADS  Google Scholar 

  42. N Wang M Liu, X Z Wu and J Meng Phys. Lett. B 734 215 (2014)

  43. D N Poenaru and W Greiner Phys. Scr. 44 427 (1991)

    Article  ADS  Google Scholar 

  44. Sophie Heinz J. Phys. Conf. Ser. 1014 012005 (2018)

  45. S Hofmann J. Phys. G. Nucl. Part. Phys. 42 114001 (2015)

  46. S Hofmann Exciting Interdisciplinary Physics, p. 23 Springer, Heidelberg, (2013)

  47. Suhel Ahmad, A A Usmani, and Z A Khan, Phys. Rev. C 96 064602 (2017)

  48. Tasleem Ahmad Siddiqui, Abdu Quddus, Shakeb Ahmad, and S K Patra, J. Phys. G. Nucl. Part. Phys. 47 115103 (2020)

  49. M Bhuyan and S K Patra Mod. Phys. Lett. A 27 30 1250173 (2012)

    Article  ADS  Google Scholar 

  50. O N Ghodsi and M Hassanzad Phys. Rev. C 101 034606 (2020)

  51. M Ismail and W M Seif Phys. 406 1 (2019)

    Google Scholar 

  52. D Ackermann and C Theisen Phys. Scr. 92 083002 (2017)

  53. K P Santhosh and Indu Sukumaran Can. J. Phys. 95 31 (2017)

  54. S Thakur J. Phys. 43 152 (2013)

    Google Scholar 

  55. P Mohr Phys. Rev. C 73 031301 (2006)

  56. H Koura Prog. Theor. Phys. 113 305 (2005)

  57. M Ismail, A Y Ellithi, A Adel and Hisham Anwer J. Phys. G: Nucl. Part. Phys. 43 015101 (2016)

  58. M Ismail, W M Seif, and A Abdurrahman Phys. Rev. C 94 024316 (2016)

  59. P Möller and A J Sierk Data and Nucl. Data Tables 109 1 (2016)

    Article  ADS  Google Scholar 

  60. K P Santhosh and Indu Sukumaran Braz. J. Phys. 46 754 (2016)

  61. K P Santhosh and Indu Sukumaran Braz. J. Phys. 48 497 (2018)

  62. D N Poenaru and H Stöcker Phys. J. A 54 14 (2018)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Biju.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prathapan, K., Anjali, K.P. & Biju, R.K. Studies on alpha, cluster and halo emissions from Z = 128–132 superheavy nuclei leading to doubly magic 310126 daughter nuclei. Indian J Phys 96, 2949–2961 (2022). https://doi.org/10.1007/s12648-021-02201-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02201-2

Keywords

Navigation