Skip to main content
Log in

Prediction of intensity of moderate and intense geomagnetic storms using artificial neural network during two complete solar cycles 23 and 24

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This work aims to predict moderate, intense, and super geomagnetic storms during the two recent solar cycles 23 and 24 encompassing the period 1996–2018 using an artificial neural network (ANN). Optimization of the neural network includes a choice of activation function, training function, learning function, hidden layers, hidden neurons, learning rate, and momentum constant. The results obtained by the present study show the ability of the ANN model to produce an accurate estimate of the probability appearance of moderate and intense storms of about 88.9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R K Burton, R L McPherron and C T Russell J. Geophys. Res. 80 4204 (1975)

    Article  ADS  Google Scholar 

  2. S Kugblenu, S Taguchi and T Okuzawa Earth Planets Space 51 307 (1999)

    Article  ADS  Google Scholar 

  3. J A Lazzús, C H López-Caraballo, P Rojas, I Salfate, M Rivera and L Palma-Chilla J. Phys. Conf. Ser. 720 012001 (2016)

    Article  Google Scholar 

  4. J Uwamahoro and J B Habarulema Earth Planets Space 66 95 (2014)

    Article  ADS  Google Scholar 

  5. J Uwamahoro, L A McKinnell and J B Habarulema Ann. Geophys. 30 963 (2012)

    Article  ADS  Google Scholar 

  6. N Srivastava Ann. Geophys. 23 2969 (2005)

    Article  ADS  Google Scholar 

  7. Y Kamide et al. J. Geophys. Res. Space Phys. 103 17705 (1998)

    Article  ADS  Google Scholar 

  8. Y M Wang, P Z Ye, S Wang, G P Zhou and J X Wang J. Geophys. Res. 107 1340 (2002)

    Article  Google Scholar 

  9. J A Lazzús, P Vega, P Rojas and I Salfate Space Weather 15 1068 (2017)

    Article  ADS  Google Scholar 

  10. A Lethy, M A El-Eraki, A Samy and H Adeebes Space Weather 16 1277 (2018)

    Article  ADS  Google Scholar 

  11. D H Hathaway Living Rev. Sol. Phys. 7 1 (2010)

    Article  ADS  Google Scholar 

  12. H Lundstedt, H Gleisner and P Wintoft Geophys. Res. Lett. 29 34 (2002)

    Article  Google Scholar 

  13. H Lundstedt and P Wintoft Ann. Geophys. 12 19 (1994)

    Article  ADS  Google Scholar 

  14. F Valach, M Revallo, J Bochnicek and P Hejda Space Weather 7 S04004 (2009)

    Article  ADS  Google Scholar 

  15. M Dryer, Z Smith, C D Fry, W Sun, C S Deehr and S I Akasofu Space Weather 2 S09001 (2004)

    Article  ADS  Google Scholar 

  16. G Singh and A K Singh J. Earth Syst. Sci. 125 899 (2016)

    Article  ADS  Google Scholar 

  17. M Chandorkar, E Camporeale and S Wing Space Weather 15 1004 (2017)

    Article  ADS  Google Scholar 

  18. M A Gruet, M Chandorkar, A Sicard and E Camporeale Space Weather 16 1882 (2018)

    Article  ADS  Google Scholar 

  19. S B Xu, S Y Huang, Z G Yuan, X H Deng and K Jiang Astrophys J Suppl S 248 14 (2020)

    Article  ADS  Google Scholar 

  20. G E Brueckner et al. Geophys. Res. Lett. 25 3019 (1998)

    Article  ADS  Google Scholar 

  21. B Vrsnak, D Maricic, A L Stanger, A M Veronig, M Temmer and D Rosa Sol. Phys. 241 85 (2007)

    Article  ADS  Google Scholar 

  22. E Robbrecht, D Berghmans and R A M Van der Linden Astrophys. J. 691 1222 (2009)

    Article  ADS  Google Scholar 

  23. N Srivastava and P Venkatakrishnan J. Geophys. Res. 109 A10103 (2004)

    Article  ADS  Google Scholar 

  24. W D Gonzalez and B T Tsurutani Planet. Space Sci. 35 1101 (1987)

    Article  ADS  Google Scholar 

  25. E Echer, W D Gonzalez, B T Tsurutani and A L C Gonzalez J. Geophys. Res. 113 A05221 (2008)

    ADS  Google Scholar 

  26. I T Jolliffe Principal Component Analysis. (New York: Springer-Verlag) (2002)

    MATH  Google Scholar 

  27. M M Poulton Geophysics 67 979 (2002)

    Article  ADS  Google Scholar 

  28. C Bishop Pattern Recognition and Machine Learning. (New York: Springer-Verlag) (2006)

    MATH  Google Scholar 

  29. S C Huang and Y F Huang IEEE Trans. Neural Netw. Learn. Syst 2 47 (1991)

    Article  ADS  Google Scholar 

  30. G B Huang and H A Babri IEEE Trans. Neural Netw. Learn. Syst 9 224 (1998)

    Article  Google Scholar 

  31. B Mirko and J Christian Geophysics 65 1032 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

Acknowledgment has to be given to authors of the LASCO/SOHO catalog list of CMEs, available online at http://cdaw.gsfc.nasa.gov/CMElist which was used for the study. The work was also supported by the National Aeronautics and Space Administration for providing us the necessary data of the most significant flare, available online at http://hesperia.gsfc.nasa.gov/goes/goes event listings/goes Xray event list 2014.txt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratyush Kumar Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.K. Prediction of intensity of moderate and intense geomagnetic storms using artificial neural network during two complete solar cycles 23 and 24. Indian J Phys 96, 2235–2242 (2022). https://doi.org/10.1007/s12648-021-02192-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02192-0

Keywords

Navigation