Skip to main content
Log in

A new method for determining the bandgap in semiconductors in presence of external action taking into account lattice vibrations

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This article proposes a new method of calculating conductivity in semiconductors, taking into account lattice oscillations and thermal smears under the influence of temperature and magnetic fields. It is shown that the dependence of the effective electron mass on energy and temperature affects the temperature dependence of the bandgap in a strong magnetic field. With the help of numerical experiments and using experimental results, graphs of the temperature dependence of the bandgap in the absence and the presence of a magnetic field were obtained. The theoretical results are compared with experimental results. It is shown that to explain the dependence of the bandgap, it is necessary to take into account the contribution of thermal broadening of energy levels. It was found that the total change in the bandgap is determined by both the interaction of electrons with lattice vibrations and the thermal broadening of energy levels in the allowed bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G Gulyamov, A G Gulyamov and U I Erkaboev Indian J. Phys. 93 639 (2019)

    Article  ADS  Google Scholar 

  2. G Gulyamov, U I Erkaboev, R G Rakhimov and J I Mirzaev J. Nano Electron. Phys. 12 03012 (2020)

    Google Scholar 

  3. G Gulyamov, U I Erkaboev, N A Sayidov and R G Rakhimov J. Appl. Sci. Eng. 23 453 (2020)

    Google Scholar 

  4. U I Erkaboev, G Gulyamov, J I Mirzaev and R G Rakhimov Int. J. Mod. Phys. B 34 2050052 (2020)

    Article  ADS  Google Scholar 

  5. G Gulyamov, U I Erkaboev and N Y Sharibaev Mod. Phys. Lett. B 30 1650077 (2016)

    Article  ADS  Google Scholar 

  6. G Gulyamov, U I Erkaboev and P J Baymatov Adv. Condens. Matter Phys. 2016 5434717 (2016)

    Article  Google Scholar 

  7. G Gulyamov, N Yu Sharibaev, A G Gulyamov and U I Erkaboev Semiconductors 53 375 (2019)

    Article  ADS  Google Scholar 

  8. V S Vavilov, N P Kekelidze and L S Smirnov Effect of Radiation on Semiconductors. (Moscow: Nauka) (1988)

    Google Scholar 

  9. G Gulyamov, A G Gulyamov and U I Erkaboev J Nano Electron. Phys. 11 01020 (2019)

    Article  Google Scholar 

  10. P J Baymatov, A G Gulyamov and B T Abdulazizov Adv Condens. Matter Phys. 2019 8317278 (2019)

    Article  Google Scholar 

  11. G Gulyamov, U I Erkaboev and N Y Sharibaev Semiconductors 48 1287 (2014)

    Article  ADS  Google Scholar 

  12. B Ridley Quantum Processes in Semiconductors (Moscow: Mir) (1986)

  13. N L Bazhenov, A V Shilyaev, K D Mynbaev and G G Zegrya Semiconductors 46 773 (2012)

    Article  ADS  Google Scholar 

  14. S O Usov, A F Tsatsulnikov, V V Lundin, A V Sakharov, E E Zavarin and N N Ledentsov Semiconductors 42 188 (2008)

    Article  ADS  Google Scholar 

  15. N Nepal, J Li, M L Nakarmi, J Y Lin and H X Jiang Appl. Phys. Lett. 87 242104 (2005)

    Article  ADS  Google Scholar 

  16. V P Kunets, N R Kulish, P Kunets, M P Lisitsa and N I Malysh Semiconductors 36 219 (2002)

    Article  ADS  Google Scholar 

  17. R Pässler Physica status solidib(b) 216 975 (1999)

    Article  ADS  Google Scholar 

  18. A Raslan, P Lafleur and W A Atkinson Phys. Rev. B 95 054106 (2017)

    Article  ADS  Google Scholar 

  19. J R Tolsma, A Principi, R Asgari, M Polini and A H MacDonald Phys. Rev. B 93 045120 (2016)

    Article  ADS  Google Scholar 

  20. X Li, M Han, X Zhang, C Shan, Z Hu, Z Zhu and J Chu Phys. Rev. B 90 035308 (2014)

    Article  ADS  Google Scholar 

  21. X R Li, M J Han, P Chang, Z G Hu, Y W Li, Z Q Zhu and J H Chu Appl. Phys. Lett. 104 012103 (2014)

    Article  ADS  Google Scholar 

  22. P K Sarswat and M L Free Physica B 407 108 (2012)

    Article  ADS  Google Scholar 

  23. J Bhosale et al. Physical Review B 86 195208 (2012)

  24. M Zacharias and F Giustino Phys. Rev. B 94 075125 (2016)

    Article  ADS  Google Scholar 

  25. R Ramirez, C P Herrero and E R Hernandez Phys. Rev. B 73 245202 (2006)

    Article  ADS  Google Scholar 

  26. M Cardona, T A Meyer and M L Thewalt Phys. Rev. Lett. 92 1964031–1 (2004)

    Article  Google Scholar 

  27. M Cardona et al. Physical Review B 80 195204 (2009)

  28. Y Zhao et al Phys. Rev. B 95 014307 (2017)

    Article  ADS  Google Scholar 

  29. Huakun Zuo et al. Physical Review B 95 014502 (2017)

  30. Y Aytac et al. Journal of Applied Physics 119 215705 (2016)

  31. Y Aytac et al. Physical Review Applied 5 054016 (2016)

  32. P J Roland, K P Bhandari and R J Ellingson J. Appl. Phys. 119 094307 (2016)

    Article  ADS  Google Scholar 

  33. B K Ridley Quantum Processes in Semiconductors (USA : Clarendon Press Oxford) (1999)

  34. I M Tsidilkovsky Electrons and Holes in Semiconductors. Energy Spectrum and Dynamics (Moscow: Nauka) (1972)

  35. V M Fridkin Ferroelectric Semiconductors (Moscow: Nauka) (1976)

  36. G Gulyamov and N Sharibaev Phys. Surf. Eng. 10 22 (2012)

    Google Scholar 

  37. G Gulyamov, N Sharibaev and U Erkaboev Phys. Surf. Eng. 10 44 (2012)

    Google Scholar 

  38. G Gulyamov, N Yu Sharibaev and U I Erkaboev World J. Condens. Matter Phys. 3 216 (2013)

    Article  ADS  Google Scholar 

  39. I V Bodnar and S A Pavlukovets Semiconductors 45 1395 (2011)

    Article  ADS  Google Scholar 

  40. I V Bodnar Semiconductors 46 602 (2012)

    Article  ADS  Google Scholar 

  41. I V Bodnar Semiconductors 48 1303 (2014)

    Article  Google Scholar 

  42. N B Brandt and V A Kulbachinsky Quasiparticles in Condensed Matter Physics (Moscow : Fizmatlit) Ch. 6, p 283 (2007)

  43. A I Anselm Introduction to the theory of semiconductors (Moscow: Nauka) Ch. 6, p 367 (1978)

  44. U I Erkaboev, R G Rakhimov and N A Saidov Mod. Phys. Lett. B 2021 2150293 (2021)

    Article  Google Scholar 

  45. G Gulyamov, N Yu Sharibaev and U I Erkaboev Phys. Surf. Eng. 10 308 (2012)

    Google Scholar 

  46. U I Erkaboev, R G Rakhimov, J I Mirzaev and N A Sayidov Int. J. Innov. Technol. Explor. Eng. 9 1557 (2020)

    Article  Google Scholar 

  47. V A Kutasov, L N Lukyanova and P P Konstantinov Semiconductors 34 376 (2000)

    Article  ADS  Google Scholar 

  48. L N Lukyanova, V A Kutasov and P P Konstantinov Phys. Solid State 47 233 (2005)

    Article  ADS  Google Scholar 

  49. F Blatt Physics of Electronic Conductivity in Solids (Moscow: Mir) Ch. 11, p 403 (1971)

  50. R Passler J. Appl. Phys. 90 3956 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. I. Erkaboev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erkaboev, U.I., Gulyamov, G. & Rakhimov, R.G. A new method for determining the bandgap in semiconductors in presence of external action taking into account lattice vibrations. Indian J Phys 96, 2359–2368 (2022). https://doi.org/10.1007/s12648-021-02180-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02180-4

Keywords

Navigation