Skip to main content
Log in

Downhill and uphill diffusion of gases with temperature inversions in the atmosphere

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this study, downhill and uphill diffusion of gases with temperature inversions in the atmosphere has been studied, discussed and applied to study the increase in CO2-pollution with temperature inversions in Incheon (INC), Korea; Ho Chi Minh City (HCM), Vietnam; Alpine (ALP), France; Shanghai (SHA), China; Colorado (COL); Alaska (ALA), USA; Fukuoka (FUK), Japan; Ny Alesund (NYA), Norway; and High Arctic (ARC). Results have shown that: (i) In temperature inversions, the downhill and uphill diffusion of gases can occur, in which diffusion flux depends on the gradient of concentration and the difference of temperature. (ii) The downhill and uphill diffusion of carbon dioxide with temperature inversions can make CO2-pollution in the layer under the temperature inversion layer increase stronger or decrease slower than that without temperature inversions. (iii) The temperature inversion can make the CO2-concentration in the High Arctic increase up to 6.5 times greater than that without temperature inversions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A Fick Poggm. Ann. 94 50 (1855)

    Google Scholar 

  2. L S Darken Trans. AIME 174 184 (1948)

    Google Scholar 

  3. Y Oishi J. Chem. Phys. 43 1611 (1965)

    Article  ADS  Google Scholar 

  4. P Gupta and A Cooper Physica 54 39 (1972)

    Article  ADS  Google Scholar 

  5. K Holly and M Danielewski Phys. Rev. B 50 13336 (1994)

    Article  ADS  Google Scholar 

  6. R Krishna and J Wesselingh Chem. Eng. Sci. 52 861 (1997)

    Article  Google Scholar 

  7. T Nishiyama Phys. Earth Planetary Interiors 107 33 (1998)

    Article  ADS  Google Scholar 

  8. B Bożek, M Danielewski, K Tkacz-Śmiech and M Zajusz Mater. Sci. Tech. 31 1633 (2015)

    Article  Google Scholar 

  9. R Krishna Chem. Soc. Rev. 44 2812 (2015)

    Article  Google Scholar 

  10. M Danielewski, A Gusak, B Bozek and M Zajusz Acta Materialia 108 68 (2016)

    Article  ADS  Google Scholar 

  11. V U Ba Dung Indian Journal of Physics 91 1233 (2017)

    Article  ADS  Google Scholar 

  12. R Krishna Chemical Engineering Science 195 851 (2019)

    Article  Google Scholar 

  13. M Nodzu, S-Y Ogino, Y Tachibana and M D Yamanaka J. Climate 19 3307 (2006)

    Article  ADS  Google Scholar 

  14. S L Smith and P P Bonnaventure Arctic, Antarctic, and Alpine Research 49 173 (2017)

    Article  Google Scholar 

  15. S M Bourne, U S Bhatt, J Zhang and R Thoman Atmospheric Research 95 353 (2010)

    Article  ADS  Google Scholar 

  16. Y Cengel and M Boles Thermodynamics. (New York: McGraw-Hill) (2015)

    Google Scholar 

  17. K Olah Periodica Polytechnica Chem. Eng. 49 91 (2005)

    Google Scholar 

  18. A A William Chapter 8 - Particle Beam Scattering From the Vacuum-Liquid Interface in Physical Chemistry of Gas-Liquid Interfaces (eds) J A Faust and J E House (Illinois, USA : Elsevier) p 195 (2018)

  19. J Rudnick and G Gaspari Elements of the Random Walk. (Cambridge: Cambridge University Press) (2004)

    Book  MATH  Google Scholar 

  20. A-R Allnatt and A-B Lidiard Random-walk theories of atomic diffusion in Atomic Transport in Solids (Cambridge, UK : Cambridge University Press) p 337 (2009)

  21. N Masuda, M Porter and R Lambiotte Physics Reports 716 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  22. S Anwar and J Carroll Carbon Dioxide Thermodynamic Properties Handbook. (New Jersey: John Wiley & Sons) (2016)

    Book  Google Scholar 

  23. S Zhang, M Li, X Meng, G Fu, Z Ren, and S Gao Pure and applied geophysics 1001 (2012)

  24. Y Largeron and C Staquet Atmospheric Environment 135 92 (2016)

    Article  ADS  Google Scholar 

  25. P Huaqing, L Duanyang, Z Bin, S Yan, W Jiamei, S Hao, W Jiansu, and C Lu Advances in Meteorology 1 (2016)

  26. B P Williams, M A White, D A Krueger and C Y She Geophysical Research Letters 29 1850 (2002)

    Article  ADS  Google Scholar 

  27. G Fochesatto Atmos. Meas. Tech. 8 2051 (2015)

    Article  Google Scholar 

  28. T Vihma, T Kilpelainen, M Manninen, A Sjoblom, E Jakobson, T Palo, J Jaagus, and M Maturilli Advances in Meteorology 1 (2011)

  29. T Umezawa, H Matsueda, Y Sawa, Y Niwa, T Machida and L Zhou Atmos. Chem. Phys. 18 14851 (2018)

    Article  ADS  Google Scholar 

  30. X Lin et al Atmos. Chem. Phys. 18 9475 (2018)

    Article  ADS  Google Scholar 

  31. R Marine, F Chevallier, A Cozic, X Lin and P Bousquet Geosci. Model Dev. 11 4489 (2018)

    Article  ADS  Google Scholar 

  32. C Sweeney et al J. Geophys. Res. Atmos. 120 5155 (2015)

    Article  ADS  Google Scholar 

  33. Weather and Climate information for every country in the world, https://weather-andclimate.com/

  34. L Cao, X Chen, C Zhang, A Kurban, J Qian, T Pan, Z Yin, X Qin, F Ochege and P De Maeyer Remote Sens. 11 94 (2019)

    Article  ADS  Google Scholar 

  35. NOAA Monthly CO2 Data, https://www.co2.earth/ monthly-co2

  36. G Williams, B Schäfer and C Beck Phys. Rev. Research 2 013019 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The current work is financially supported by the Hanoi University of Mining and Geology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vu Ba Dung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dung, V.B., Tuan, T.B. Downhill and uphill diffusion of gases with temperature inversions in the atmosphere. Indian J Phys 96, 1905–1910 (2022). https://doi.org/10.1007/s12648-021-02167-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02167-1

Keywords

Navigation