Skip to main content
Log in

Polaron dynamic and decoherence in transition metal dichalcogenides under electric field

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We study in this paper, the dynamic and decoherence of polaron in transition metal dichalcogenides (TMDs) under electric field using Lee–Low Pines (LLP) method. We derived the fundamental and first excited states energies of polaron, the mobility in the two states and the lifetime of polaron. Due to the polaron’s superposition states in TMDs, the qubit is formed and then the decoherence of polaron qubit is observed throughout spontaneous emission of phonon. Transition frequency, density probability and entropy are also investigated in order to evaluate the decoherence phenomenon. Our results show that, electric field increases the polaron energies and mobility but reduces the lifetime of polaron in TMDs monolayer. Among the chosen TMDs, the polaron moves freely and lives long in WS2 monolayer. We found that electric field allows the transfer of information, destroys decoherence of polaron state and also allows to control the state of a system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. B W H Baugher, H O Churchill, Y Yang and P Jarillo-Herrero Nat. Nanotechnol. 9 262 (2014)

    ADS  Google Scholar 

  2. H I Karunadasa, E Montalvo, Y Sun, M Majda, J R Long and C J Chang Science 335 698 (2012)

    Google Scholar 

  3. D Voiry et al Nat. Mater. 12 850 (2013)

    Article  ADS  Google Scholar 

  4. Q Lu, Y Yu, Q Ma, B Chen and H Zhang Adv. Mater. 28 1917 (2016)

    Google Scholar 

  5. D Jariwala, V K Sangwan, L J Lauhon, T J Marks and M C Hersam ACS Nano 8 1102 (2014)

    Article  Google Scholar 

  6. Z Ni et al Nano Lett. 12 113 (2011)

    Article  ADS  Google Scholar 

  7. A Pakdel, C Zhi, Y Bando and D Golberg Mater. Today 15 256 (2012)

    Google Scholar 

  8. P Vogt et al Phys. Rev. Lett. 108 1 (2012)

    Google Scholar 

  9. L Song et al Phys. Rev. B 86 075429 (2012)

  10. L Ci et al Nat. Mater. 9 430 (2010)

    Article  ADS  Google Scholar 

  11. D Akinwande, N Petrone and J Hone Nat. Commun. 5 1 (2014)

    Google Scholar 

  12. S Z Butler et al ACS Nano 7 2898 (2013)

    Article  Google Scholar 

  13. S Das, M Kim, J Lee and W Choi Solid State Mater. Sci. 39 231 (2014)

    Google Scholar 

  14. S Das, J A Robinson, M Dubey, H Terrones and M Terrones Annu. Rev. Mater. Res. 45 1 (2015)

    Article  ADS  Google Scholar 

  15. X Duan, C Wang, A Pan, R Yu and X Duan Chem. Soc. Rev. 44 8859 (2015)

    Article  Google Scholar 

  16. W Xin-Ran, S Yi and Z Rong Chin. Phys. B 22 098505 (2013)

  17. Z Yin et al ACS Nano 24 74 (2012)

    Article  Google Scholar 

  18. R Cheng et al Nat. Commun. 5 1 (2014)

    ADS  Google Scholar 

  19. A Thilagam Physica B Condens. Matter 464 44 (2015)

  20. Y Zhao et al Nano Lett. 13 1007 (2013)

    Article  ADS  Google Scholar 

  21. Y Ding, Y Wang, J Ni, L Shi, S Shi and W Tang Physica B Condens. Matter 406 2254 (2011)

    Google Scholar 

  22. R Khordad, S Goudarzi and H Bahramiyan Indian J. Phys. 90 659 (2016)

    Google Scholar 

  23. J Shah Springer Science and Business Media 115 (2013)

  24. S Rudin, T Reinecke and B Segall Phys. Rev. B 42 11218 (1990)

    Article  Google Scholar 

  25. L D Landau Phys. Z. Sowjet. 3 644 (1933)

  26. J T Devreese J. Phys. Condens. Matter 19 255201 (2007)

  27. J T Devreese Phys. Today 67 54 (2014)

  28. Y Sun and J L Xiao Physica E Low Dimens. Syst. Nano 121 114122 (2020)

  29. M Porsch Phys. Status Solidi(b) 41 151 (1970)

  30. A J Fotue et al Am. J. Mod. Phys. 4 109 (2015)

    Article  Google Scholar 

  31. K Agarwal, I Martin, M D Lukin and E Demler Phys. Rev. B 87 144201 (2013)

  32. Y Sun, P F Li, and Z W Wang Phsica E Low Dimens. Syst. Nano 124 114302 (2020)

  33. Y Xiao, Z Q Li and Z W Wang J. Phys. Condens. Matter 29 485001 (2017)

  34. H Shi, H Pan, Y-W Zhang and B I Yakobson Phys. Rev. B 87 155304 (2013)

  35. H S Lee et al Nano Lett. 7 3695 (2012)

    Article  ADS  Google Scholar 

  36. Q Chen, W Wang and F M Peeters J. Appl. Phys. 123 214303 (2018)

  37. C Kenfack-Sadem et al Phys. Lett. A 384 126662 (2020)

  38. E McCann Phys. Rev. B 74 161403 (2006)

  39. Y Zhang et al Nature 459 820 (2009)

    Article  ADS  Google Scholar 

  40. Z Yang and J Ni J. Appl. Phys. 107 104301 (2010)

  41. K H Khoo and S G Louie Phys. Rev. B 69 201401 (2004)

  42. A Ramasubramaniam, D Naveh and E Towe Phys. Rev. B 84 205325 (2011)

  43. J Qi, X Li, X Qian and J Feng Appl. Phys. Lett. 102 173112 (2013)

  44. C Shihua and X Jinglin J. Sem. 27 1923 (2009)

    Google Scholar 

  45. S C Kenfack, A J Fotué, M F C Fobasso, G N Bawe Jr and L C Fai Superlattices Microstruct. 111 32 (2017)

    Article  ADS  Google Scholar 

  46. Y A Pashkin, T Yamamoto, O Astaev, Y Nakamura, D Averin and J S Tsai Nature 421 823 (2003)

    Article  Google Scholar 

  47. M Governale M Grifoni and G Schon Chem. Phys. 268 273 (2001)

    Google Scholar 

  48. M Thorwart and P Hanggi Phys. Rev. A 65 012309 (2001)

  49. M J Storcz and F K Wilhelm Phys. Rev. A 67 042319 (2003)

  50. Z H Liang and J L Xiao Indian J. Phys. 92 437 (2018)

    Article  Google Scholar 

  51. R Khordad and H R Sedehi Indian J. Phys. 91 825 (2017)

    Article  Google Scholar 

  52. R Khordad and H R Sedehi Indian J. Phys. 92 979 (2018)

    Article  Google Scholar 

  53. H R Sedehi and R Khordad Solid State Commun. 313 113911 (2020)

  54. M Servatkhah, R Khordad and A Firoozi Eur. Phys. J. B 93 1 (2020)

    Article  MathSciNet  Google Scholar 

  55. Y Sun and J L Xiao Opt. Quantum Electron. 51 1 (2019)

    Article  Google Scholar 

  56. J L Xiao J. Low Temp. Phys. 203 65 (2021)

  57. W Qui, Y J Chen, Y Sun and J L Xiao Iran. J. Sci. Technol. Trans. A Sci. 44 1237 (2020)

    Google Scholar 

  58. J L Xiao J. Low Temp. Phys. 195 442 (2019)

  59. A J Fotue, S C Kenfack, H Fotsin, M Tiotsop, L C Fai and M T Djemmo Phys. Sci. Int. J. 15 (2015)

  60. R Khordad Opt. Quantum Electron. 48 251 (2016)

  61. X F Bai and Y Zhang Indian J. Phys. (2020). https://doi.org/10.1007/s12648-020-01827-y

  62. P M Krishna, S Mukhopadhyay and A Chatterjee Int. J. Mod. Phys. B 16 1489 (2002)

    Article  ADS  Google Scholar 

  63. Y Sun, Z H Ding and J L Xiao Physica B Condens. Matter 444 103 (2014)

    Google Scholar 

  64. C Y Cai, C L Zhao and J L Xiao J. Low Temp. Phys. 178 142 (2015)

    Article  ADS  Google Scholar 

  65. C Y Cai, C L Zhao and J L Xiao J. Electron. Matter 46 971 (2017)

    Article  ADS  Google Scholar 

  66. Z L Xin and J L Xiao J. At. Mol. Sci. 2 74 (2011)

    Google Scholar 

  67. M F C Fobasso, C Kenfack-Sadem, E Baloitcha, A J Fotué and L C Fai Eur. Phys. J. Plus 135 1 (2020)

    Google Scholar 

  68. Y Sun, Z H Ding and J L Xiao J. At. Mol. Sci. 4 176 (2013)

    ADS  Google Scholar 

  69. A J Fotue et al Am. J. Mod. Phys. 4 138 (2015)

    Article  Google Scholar 

  70. W P Li, J W Yin, Y F Yu, Z W Wang and J L Xiao J. Low Temp. Phys. 160 112 (2010)

    Article  ADS  Google Scholar 

  71. L C Fai, M Tchoffo, J T Diffo and G C Fouokeng Phys. Sci. Int. J. 4 267 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kenfack-Sadem.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguepnang, J.V., Teguimfouet, A.K., Kenfack-Sadem, C. et al. Polaron dynamic and decoherence in transition metal dichalcogenides under electric field. Indian J Phys 96, 2001–2010 (2022). https://doi.org/10.1007/s12648-021-02158-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02158-2

Keywords

Navigation