Skip to main content
Log in

Role of interfacial electric field in thermal conductivity of indium-rich GaN/InxGa1−xN/GaN superlattices (x ≥ 0.7)

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Improved thermoelectric (TE) property involves low thermal conductivity (k) but high electrical conductivity (\(\sigma\)) and Seebeck coefficient (S). Experiment has confirmed that interfacial polarization electric (IPE) field (~ 1 MV/cm) of GaN/InxGa1−xN/GaN superlattices (SLs) enhances both S and \(\sigma\). In this work, role of IPE field on thermal boundary resistance (TBR) and in-plane (kip) as well as cross-plane thermal conductivities (kcp) of indium-rich GaN/InxGa1−xN /GaN SLs (x ≥ 0.7) are explored theoretically. IPE field influences lattice vibrations on account of the inverse piezoelectric effect, resulting in modification of elastic and phonon properties of the SLs. Our results show that TBR is enhanced (2.10–5.30 × 10–9 m2 KW−1) due to unequal changes in phonon velocity and specific heat on both sides of the interface leading to enhanced interface scattering, decreased phonon transmission, and more mismatches of acoustic properties. This caused reduction in kip and kcp of the SL under the action of IPE field. Room temperature (RT) kip in the presence (absence) of IPE field of GaN (10 nm)/InxGa1−xN (5 nm) SL are 8.204(9.402) and 9.312(10.564) Wm−1 K−1 respectively, for x = 0.7 and 0.9, whereas RT kcp for the same x are 4.871(6.012) and 6.083(7.327) Wm−1 K−1 exhibiting more than 20% reduction and are in good agreement with available experimental results of similar type of SLs. This work demonstrates that desired value of k can be achieved by tailoring polarization mechanism of nitride SLs for optimum TE power production at RT and above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

On request to corresponding author, data can be made available.

References

  1. G S Nolas, J Sharp and H J Goldsmid Thermoelectrics: Basic Principles and New Materials Developments. (New York: Springer) (2001)

    Book  MATH  Google Scholar 

  2. J Yang et al NPJ Computational Materials 2 15015 (2016).

    Article  ADS  Google Scholar 

  3. S M Lee, D G Cahill and R Venkatasubramanian Appl. Phys. Lett 70 2957 (1997).

    Article  ADS  Google Scholar 

  4. T B Tasciuc et al Superlatt. and Microst 28 199 (2000).

    Article  ADS  Google Scholar 

  5. S T Huxtable et al Appl. Phys. Lett 80 1737 (2002).

    Article  ADS  Google Scholar 

  6. R Cheaito et al Phys. Rev. Lett 109 195901 (2012).

    Article  ADS  Google Scholar 

  7. Z Aksamija and I Knezevic Phys. Rev. B 88 155318 (2013).

    Article  ADS  Google Scholar 

  8. R Venkatasubramanian Phys. Rev. B 61 3091 (2000).

    Article  ADS  Google Scholar 

  9. G R Jaffe et al ACS Appl. Mater. Interfaces 11 11970 (2019).

    Article  Google Scholar 

  10. B Saha et al Phys. Rev. B 93 045311 (2016).

    Article  ADS  Google Scholar 

  11. B Saha et al J. Appl. Phys 121 015109 (2017).

    Article  ADS  Google Scholar 

  12. W Kim et al Phys. Rev. Lett 96 045901 (2006).

    Article  ADS  Google Scholar 

  13. Y K Koh, Y Cao, D G Cahill and D Jena Adv. Funct. Mater 19 1 (2009).

    Article  Google Scholar 

  14. R Chmielowski et al Scientific Reports 7 46630 (2017).

    Article  ADS  Google Scholar 

  15. J J Kuo et al Energy Environ. Sci 13 1250 (2020).

    Article  Google Scholar 

  16. P Chen et al Phys. Rev. Lett 111 115901 (2013).

    Article  ADS  Google Scholar 

  17. F X Alvarez et al J. Appl. Phys 107 084303 (2010).

    Article  ADS  Google Scholar 

  18. S Mei and I Knezevic J. Appl. Phys. 118 175101 (2015).

    Article  ADS  Google Scholar 

  19. G Pernot et al Nat. Mater 9 491 (2010).

    Article  ADS  Google Scholar 

  20. M N Luckyanova et al Science 338 936 (2012).

    Article  ADS  Google Scholar 

  21. Q Zhang et al J. Mater. Chem 21 12398 (2011).

    Article  Google Scholar 

  22. J Alvarez-Quintana et al Appl. Phys. Lett 93 013112 (2008).

    Article  ADS  Google Scholar 

  23. C Zhen et al Chin. Sc. Bull 51 2931 (2006).

    Article  Google Scholar 

  24. J Kim et al J. Appl. Phys 123 245103 (2018).

    Article  ADS  Google Scholar 

  25. P Ferrando-Villalba et al Nano Research 8 2833 (2015).

    Article  Google Scholar 

  26. W S Capinski et al Phys. Rev. B 59 8105 (1999).

    Article  ADS  Google Scholar 

  27. R Cheaito et al Phys. Rev. B 97 085306 (2018).

    Article  ADS  Google Scholar 

  28. A Sood et al Appl. Phys. Lett 105 051909 (2014).

    Article  ADS  Google Scholar 

  29. R Jia, L Zeng, G Chen and E A Fitzgerald Appl. Phys. Lett 110 222105 (2017).

    Article  ADS  Google Scholar 

  30. S Yamaguchi et al Appl. Phys. Lett 84 5344 (2004).

    Article  ADS  Google Scholar 

  31. A Sztein et al Appl. Phys. Exp 2 111003 (2009).

    Article  ADS  Google Scholar 

  32. S Yamaguchi et al Appl. Phys. Lett 83 5398 (2003).

    Article  ADS  Google Scholar 

  33. W Liu and A A Balandin J. Appl. Phys. 97 123705 (2005).

    Article  ADS  Google Scholar 

  34. T Tong, D Fu, A X Levander, W J Schaff and B N Pantha Appl. Phys. Lett 102 121906 (2013).

    Article  ADS  Google Scholar 

  35. J Zou, D Kotchetkov, A Balandin, D Florescu and F Pollak J. Appl. Phys 92 2534 (2002).

    Article  ADS  Google Scholar 

  36. J Zhang et al J. Appl. Phys. 109 053706 (2011).

    Article  ADS  Google Scholar 

  37. B N Pantha, R Dahal, J Li, J Y Lin, H X Jiang and G Pomrenke Appl. Phys. Lett. 92 042112 (2008).

    Article  ADS  Google Scholar 

  38. A Sztein, H Ohta, J E Bowers, S P Den Baars and S Nakamura J. Appl. Phys 110 123709 (2011).

    Article  ADS  Google Scholar 

  39. J Ju et al AIP Advances 6 045216 (2016).

    Article  ADS  Google Scholar 

  40. C Wood and D Jena Polarization Effects in Semiconductors: From Ab InitioTheory to Device Applications. (New York: Springer) (2000)

    Google Scholar 

  41. O Ambacher et al J. Phys: Condens. Matter 14 3399 (2002).

    ADS  Google Scholar 

  42. A Sztein, J E Bowers, S P DenBaars and S Nakamura Appl. Phys. Lett. 104 042106 (2014).

    Article  ADS  Google Scholar 

  43. H Morkoc Nitride Semiconductor Devices. (Weinheim: Wiley-VCH Verlag GmbH & Co.) (2013)

    Book  Google Scholar 

  44. M Balkanski and R F Wallis Semiconductor Physics and Application. (New York: Oxford Univ. Press) (2000)

    Google Scholar 

  45. S K Sahoo, B K Sahoo and S Sahoo J. Appl. Phys 114 163501 (2013).

    Article  ADS  Google Scholar 

  46. S P Lepkowski and I Gorczyca Phys. Rev. B 83 203201 (2011).

    Article  ADS  Google Scholar 

  47. M Lopuszynski J AMajewaki J. Appl. Phys. 111 033502 (2012).

    ADS  Google Scholar 

  48. F Bernardini, V Fiorentini and O Ambacher Appl. Phys. Lett 80 1204 (2002).

    Article  ADS  Google Scholar 

  49. G Vaschenko, D Patel, C S Menoni, H M Ng and A Y Cho Appl. Phys. Lett 80 4211 (2002).

    Article  ADS  Google Scholar 

  50. R J Jimenez-Rioboo et al Appl. Phys. Lett. 101 062103 (2012).

    Article  ADS  Google Scholar 

  51. J Hsiao et al PLoS ONE 14 9 e0222928 (2019).

    Article  Google Scholar 

  52. V Gedam, A Pansari and B K Sahoo J. Electron. Mater 44 1035 (2015).

    Article  ADS  Google Scholar 

  53. V Gedam, A Pansari and B K Sahoo Ind. J. Phys 90 991 (2016).

    Article  Google Scholar 

  54. D Holec et al J. Appl. Phys 104 123514 (2008).

    Article  ADS  Google Scholar 

  55. W Zhao et al J. Crys. Growth 327 202 (2011).

    Article  ADS  Google Scholar 

  56. J W Matthews and A E Blakeslee J. Crystal Growth 27 118 (1974).

    ADS  Google Scholar 

  57. A Fischer, H Kuhne and H Richter Phys. Rev. Lett. 73 2712 (1994).

    Article  ADS  Google Scholar 

  58. M Leyer et al J. Crys. Growth 310 4913 (2008).

    Article  ADS  Google Scholar 

  59. M J Reed, C Parker, J Roberts and S M Bedair Appl. Phys. Lett 77 4121 (2000).

    Article  ADS  Google Scholar 

  60. I Gorczyca, K Skrobas, T Suski, N Christensen and A Svane J. Appl. Phys 118 075702 (2015).

    Article  ADS  Google Scholar 

  61. Y Noh, M Kim and J Oh J. Appl. Phys 110 123108 (2011).

    Article  ADS  Google Scholar 

  62. F Zhang et al Nanoscale Res. Lett. 11 519 (2016).

    Article  ADS  Google Scholar 

  63. M Gladysiewicz et al Appl. Phys. Lett 107 262107 (2015).

    Article  ADS  Google Scholar 

  64. J W Pomeroy, M Kuball, H Lu, W J Schaff, X Wang and A Yoshikawa Appl. Phys. Lett 86 223501 (2005).

    Article  ADS  Google Scholar 

  65. D Y Song et al Appl. Phys. Lett 89 021901 (2006).

    Article  ADS  Google Scholar 

  66. D Y Song et al J. Appl. Phys 101 053535 (2007).

    Article  ADS  Google Scholar 

  67. N Domenech-Amador, R Cusco, L Artus, T Yamaguchi and Y Nanishi Phys. Rev. B 83 245203 (2011).

    Article  ADS  Google Scholar 

  68. X D Pu, J Chen, W Shen, H Ogawa and Q X Guo J. Appl. Phys 98 033527 (2005).

    Article  ADS  Google Scholar 

  69. T H Chou et al Phys. Rev. B 100 094302 (2019).

    Article  ADS  Google Scholar 

  70. L Qiao, H Zhou and C Li Mater. Sc. Eng. B 99 102 (2003).

    Article  Google Scholar 

  71. B A Danilchenko, T Paszkiewicz, S Wolski, A Jeżowski and T Plackowski Appl. Phys. Lett. 89 061901 (2006).

    Article  ADS  Google Scholar 

  72. E Ziade et al Appl. Phys. Lett. 110 031903 (2017).

    Article  ADS  Google Scholar 

  73. C Guthy, C Y Nam and J E Fischer J. Appl. Phys. 103 064319 (2008).

    Article  ADS  Google Scholar 

  74. Z Su et al Appl. Phys. Lett. 100 201106 (2012).

    Article  ADS  Google Scholar 

  75. E S Landry and A J H McGaughey Phys. Rev. B 80 165304 (2009).

    Article  ADS  Google Scholar 

  76. K R Hahn, M Puligheddu and L Colombo Phys. Rev. B 91 195313 (2015).

    Article  ADS  Google Scholar 

  77. C A Polanco and L Lindsay Phys. Rev. B 99 075202 (2019).

    Article  ADS  Google Scholar 

  78. J Cho et al Phys. Rev. B 89 115301 (2014).

    Article  ADS  Google Scholar 

  79. Y Kurosaki, S Yabuuchi, A Nishide, N Fukatani and J Hayakawa Appl. Phys. Lett 113 013904 (2018).

    Article  ADS  Google Scholar 

  80. M Gorfien et al Struct. Dyn. 7 025101 (2020).

    Article  Google Scholar 

  81. M S Vitiello, G Scamarcio and V Spagnolo IEEE J. Selected Topics in Quant. Electron 14 431 (2008).

    Article  ADS  Google Scholar 

  82. V Samvedi and V Tomar Nanotechnology 20 365701 (2009).

    Article  ADS  Google Scholar 

  83. D Xu et al Front. Energy 12 1 127 (2018).

    Article  Google Scholar 

  84. J Zhang et al J. Appl. Phys 109 053706 (2011).

    Article  ADS  Google Scholar 

  85. C K Liu et al J. Appl. Phys 104 114301 (2008).

    Article  ADS  Google Scholar 

  86. M S Vitiello, G Scamarcioand and V Spagnolo Appl. Phys. Lett 90 431 (2007).

    Google Scholar 

  87. M N Luckyanova et al Nano Lett. 13 3973 (2013).

    Article  ADS  Google Scholar 

  88. J P Feser, Ph. D Thesis, (2010); https://escholarship.org/uc/item/4pd6x934

  89. H K Lee and J S Yu Appl. Phys. B 106 619 (2012).

    Article  ADS  Google Scholar 

  90. L Thumfart et al J. Phys. D: Appl. Phys 51 014001 (2018).

    Article  ADS  Google Scholar 

  91. T L Bougher et al Nanosc. Microsc. Therm 20 22 (2016).

    Article  Google Scholar 

  92. B Kucukgok, X Wu, X Wang, Z Liu, I T Ferguson and N Lu AIP Advances 6 025305 (2016).

    Article  ADS  Google Scholar 

  93. G Xie, D Ding and G Zhang Adv. Phys.: X 3 1480417 (2018).

    Google Scholar 

  94. Y Wang, C Liebig, X Xu and R Venkatasubramanian Appl. Phys. Lett 97 083103 (2010).

    Article  ADS  Google Scholar 

  95. M Hijazi and M Kazan AIP Advances 6 065024 (2016).

    Article  ADS  Google Scholar 

  96. M Upadhyaya and Z Aksamija, Springer International Publishing AG, part of Springer Nature (2018) W. Andreoni, S. Yip (eds.), Handbook of Materials Modelling, https://doi.org/10.1007/978-3-319-50257-1_16-1

Download references

Acknowledgements

Authors acknowledge with thank to DST-SERB Govt. of India for financial support through Project No. EMR/2016/001019.

Author information

Authors and Affiliations

Authors

Contributions

Subhranshu Sekhar Sahu carried out investigation, visualization, formal analysis, writing—original draft. Bijaya Kumar Sahoo carried out conceptualization, methodology, supervision, validation, writing—review and editing.

Corresponding author

Correspondence to Bijay Kumar Sahoo.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, S.S., Sahoo, B.K. Role of interfacial electric field in thermal conductivity of indium-rich GaN/InxGa1−xN/GaN superlattices (x ≥ 0.7). Indian J Phys 96, 2023–2039 (2022). https://doi.org/10.1007/s12648-021-02141-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02141-x

Keywords

Navigation