Skip to main content
Log in

Thermodynamic properties of some diatomic molecules confined by an harmonic oscillating system

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this study, the one-dimensional Schrödinger equation with harmonic oscillator is solved within the formalism of proper quantization rule and obtain the energy levels. By employing Hellmann–Feynman theorem, the expectation value for the square of position \(x^{2}\) is evaluated and thereafter derived an expression for the diamagnetic susceptibility. Furthermore, using the energy levels equation, the expressions for the partition function, thermodynamic properties and the Massieu function were obtained. Using the spectroscopic parameters for the selected diatomic molecules, some graphs were plotted and reported. The graphical results show that diamagnetic susceptibility depends on the atomic number (z), and number of states n and that molecules in the ground state experienced the strongest effect of diamagnetic susceptibility. It was also found that the thermodynamic properties of some diatomic molecules depend not just on temperature but also on the vibrational frequencies (ω) and the number of states (n). The number of accessible vibrational states depends on temperature and the masses of the molecules. The heaviest molecule has the highest accessible vibrational state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S Flügge Practical Quantum Mechanics. (New York: Springer) (1994)

    MATH  Google Scholar 

  2. C Kittel Introduction to Solid State Physics, 8th edn. (New York: Wiley) (2005)

    MATH  Google Scholar 

  3. O J Oluwadare and K J Oyewumi Eur. Phys. J. Plus 133 422 (2018)

    Article  Google Scholar 

  4. H Hartmann, R Schuck and J Radtke Die. Theor. Chim. Acta 42 1 (1976)

    Article  Google Scholar 

  5. H Hartmann and D Schuch Int. J. Quant. Chem. 18 125 (1980)

    Article  Google Scholar 

  6. R Khordad, N Fathizadeh, S Davatolhagh and A R Jafari Eur. Phys. J. B 85 353 (2012)

    Article  ADS  Google Scholar 

  7. S H Dong and M C Cruz-Irisson J. Math. Chem. 50 881 (2012)

    Article  MathSciNet  Google Scholar 

  8. S M Ikhdair and B J Falaye Chem. Phys. 421 84 (2013)

    Article  Google Scholar 

  9. K J Oyewumi, B J Falaye, C A Onate, O J Oluwadare and W A Yahya Mol. Phys. 112 127 (2013)

    Article  ADS  Google Scholar 

  10. B J Falaye Proc. of 2nd. The IRES Int. Conf. (2015)

  11. C A Onate Chin. J. Phys. 54 165 (2016)

    Article  MathSciNet  Google Scholar 

  12. A Boumali and H Hassanabadi Adv. High Energy Phys. 9371391 (2017)

  13. X Q Song, C W Wang and C S Jia Chem. Phys. Lett. 673 50 (2017)

    Article  ADS  Google Scholar 

  14. C S Jia, L H Zhang and C W Wang Chem. Phys. Lett. 667 211 (2017)

    Article  ADS  Google Scholar 

  15. U S Okorie, E E Ibekwe, A N Ikot, M C Onyeaju and E O Chukwuocha J. Kor. Phys. Soc. 73 1211 (2018)

    Article  ADS  Google Scholar 

  16. A N Ikot, U S Okorie, R Sever and G J Rampho Eur. Phys. J. Plus 134 386 (2019)

    Article  Google Scholar 

  17. D F Jr Eggers, N W Gregory, G D Jr Halsey and B S Rabinovitch Physical Chemistry. (New York: Wiley) (1964)

    Google Scholar 

  18. D A McQuarrie Statistical Thermodynamics. (Mill Valley: University Science Books) (1972)

    Google Scholar 

  19. B C Garrett and D G Truhlar In: P V R Schleyer, N L Allinger, T Clark, P Gasteiger, P A Kollman, H F Schaeffer III (eds.) Encyclopedia of Computational Chemistry, vol 5. (New York: Wiley) p 3094 (1998)

    Google Scholar 

  20. T L Hill An Introduction to Statistical Thermodynamics. (New York: Dover) (1986)

    Google Scholar 

  21. A Chakraborty and D G Truhlar J. Chem. Phys. 124 184310 (2006)

    Article  ADS  Google Scholar 

  22. E A Guggenheim Thermodynamics: An Advanced Treatment for Chemists and Physicists, (New York: North Holland Physics Publishing Division) p. 89 (1967)

    Google Scholar 

  23. W Greiner and B Müller Quantum Mechanics: An Introduction. (Berlin: Springer) (1994)

    Book  MATH  Google Scholar 

  24. J Wang, C S Jia, C J Li, X L Peng, L H Zhang and J Y Liu ACS Omega 4 19193 (2019)

    Article  Google Scholar 

  25. C S Jia et al. J. Mol. Liq. 315 113751 (2020)

    Article  Google Scholar 

  26. C W Wang et al. J Mol. Liq. 321 114912 (2021)

    Article  Google Scholar 

  27. C S Jia, C W Wang, L H Zhang, X L Peng, H M Tang and R Zeng Chem. Eng. Sci. 183 26 (2018)

    Article  Google Scholar 

  28. X L Peng, R Jiang, C S Jia, L H Zhang and Y L Zhao Chem. Eng. Sci. 190 122 (2018)

    Article  Google Scholar 

  29. C S Jia, R Zeng, X L Peng, L H Zhang and Y L Zhao Chem. Eng. Sci. 190 1 (2018)

    Article  Google Scholar 

  30. C S Jia et al. Chem. Eng. Sci. 202 70 (2019)

    Article  Google Scholar 

  31. B Tang, Y T Wang, X L Peng, L H Zhang and C S Jia J. Mol. Struct. 1199 126958 (2020)

    Article  Google Scholar 

  32. C S Jia, C W Wang, L H Zhang, X L Peng, R Zeng and X T You Chem. Phys. Lett. 676 150 (2017)

    Article  ADS  Google Scholar 

  33. C S Jia et al. Chem. Phys Lett. 692 57 (2018)

    Article  ADS  Google Scholar 

  34. R Jiang, C S Jia, Y Q Wang, X L Peng and L H Zhang Chem. Phys Lett. 715 186 (2019)

    Article  ADS  Google Scholar 

  35. C S Jia et al. Chem. Phys Lett. 717 16 (2019)

    Article  ADS  Google Scholar 

  36. R Jiang, C S Jia, Y Q Wang, X L Peng and L H Zhang Chem. Phys Lett. 726 83 (2019)

    Article  ADS  Google Scholar 

  37. R K Pathria and P D Beale Statistical Mechanics, 3rd edn. (Amsterdam: Elsevier) p. 67 (2011)

    MATH  Google Scholar 

  38. F A Serrano, M C Cruz-Irisson and S H Dong Ann. Phys. 523 771 (2011)

    Article  MathSciNet  Google Scholar 

  39. K P Huber and G Herzberg Molecular Spectral and Molecular Structure IV: Constants of Diatomic molecules. (New York: Van Nostrand Reinhold) (1979)

    Book  Google Scholar 

  40. P Atkins and J D Paula Physical Chemistry, 8th edn. (New York: Oxford University Press) (2006)

    Google Scholar 

Download references

Acknowledgements

The authors thank the kind referees for their positive suggestions that have improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. J. Oluwadare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oluwadare, O.J., Oyewumi, K.J. & Abiola, T.O. Thermodynamic properties of some diatomic molecules confined by an harmonic oscillating system. Indian J Phys 96, 1921–1928 (2022). https://doi.org/10.1007/s12648-021-02139-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02139-5

Keywords

Navigation