Skip to main content
Log in

Raman spectra and infrared intensities of graphene-like clusters in compared to epitaxial graphene on SiC

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

There are several growing methods for graphene. In this study, the growth of graphene-like clusters on the SiC wafers is done by annealing the wafers in a vacuum evaporation system equipped with a heating source accessory. For evaluating the quality of the growth method, the Raman spectra and infrared intensities of graphene-like clusters are studied theoretically and experimentally. For doing the theoretical study, three types of graphene clusters are considered and their Raman spectrum and infrared intensities are found using the Hartree–Fock method. The results show that the geometry of the cluster, and in consequence the geometry-dependent high (low) non-uniformity of charge distribution on the cluster surfaces causes the high (low) infrared intensities. The experimental spectrums are measured and compared with the theoretical ones. An agreement was seen between the experimental and theoretical Raman spectrum when the wave number is less than 1700 Cm−1. It is shown that more accurate temperature control and higher vacuum level of the chamber are essential for using the physical evaporation method for growing the single-layer graphene on the SiC substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y Zhang, Y W Tan, H L Stormer and P Kim Nature 438 201 (2005)

    Article  ADS  Google Scholar 

  2. A Bostwick, T Ohta, T Seyller, K Horn and E Rotenberg Nature Phys 3 36 (2007)

    Article  ADS  Google Scholar 

  3. K I Bolotin et al. Solid State Commun. 146 351 (2008)

    Article  ADS  Google Scholar 

  4. D Momeni Pakdehi et al. ACS Appl. Nano Mater. 2 844 (2019)

    Article  Google Scholar 

  5. W Norimatsu and M Kusunoki Phys. Chem. Chem. Phys. 16 3501 (2014)

    Article  Google Scholar 

  6. G R Yazdi, T Iakimov and R Yakimova Crystals 6 53 (2016)

    Article  Google Scholar 

  7. J H Seol et al. Science 328 213 (2010)

    Article  ADS  Google Scholar 

  8. S Y Zhou et al. Nature Mater. (2007)

  9. K S Novoselov et al. Science 306 666 (2004)

    Article  ADS  Google Scholar 

  10. W Hummers and R E OffemanJ Am. Chem. Soc. 801 339 (1958)

    Google Scholar 

  11. M Kruskopf et al. 2D Mater. 3 041002 (2016)

    Article  Google Scholar 

  12. S Niyogi, E Bekyarova, M E Itkis, J L Mcwilliams, M A Hamon and R C Haddon J. Am. Chem. Soc. 128 7720 (2006)

    Article  Google Scholar 

  13. M L Bolen, S E Harrison, L B Biedermann and M A Capano Phys. Rev. B 80 115433 (2009)

    Article  ADS  Google Scholar 

  14. Y Zhang, L Zhang and Ch Zhou Acc. Chem. Res. 46 10 2329 (2013)

    Article  Google Scholar 

  15. A K Geim Science 3246 1530 (2009)

    Article  ADS  Google Scholar 

  16. J Hass, W A de Heer and E H Conrad J. Phys. Condens. Matter 20 323202 (2008)

    Article  Google Scholar 

  17. C Berger et al. J. Phys. Chem. B 108 19912 (2004)

    Article  Google Scholar 

  18. T Cavallucci and V Tozzini Sci. Rep. 8 13097 (2018)

    Article  ADS  Google Scholar 

  19. J B Hannon and R M Tromp Phys. Rev. B 77 2414041 (2008)

    Article  Google Scholar 

  20. N Camara et al. Appl .Phys. Lett. 93 263102 (2008)

    Article  ADS  Google Scholar 

  21. Z H Ni, W Chen, X F Fan, J L Kuo, T Yu, A T S Wee and Z X Shen Phys. Rev. B 77 115416 (2008)

    Article  ADS  Google Scholar 

  22. A C Ferrari et al. Phys. Rev. Lett. 97 187401 (2006)

    Article  ADS  Google Scholar 

  23. M Hupalo, E H Conrad and M C Tringides Phys. Rev. B 80 0414011 (2009)

    Article  Google Scholar 

  24. L M Malard, M A Pimenta, G Dresselhaus and M S Dresselhaus Phys. Rep. 473 51 (2009)

    Article  ADS  Google Scholar 

  25. S Reich and C T R Thomsen Philos. Trans. R. Soc. Lond. Series A Math. Phys. Eng. Sci. 362 2271 (2004)

    Article  ADS  Google Scholar 

  26. M S Dresselhaus and P C Eklund Adv. Phys. 49 705 814 (2000)

    Google Scholar 

  27. M S Dresselhaus, G Dresselhaus, R Saito and A Jorio Phys. Rep. 409 47 (2005)

    Article  ADS  Google Scholar 

  28. S Pisana et al. Nature Mater. 6 198 (2007)

    Article  ADS  Google Scholar 

  29. A A Cristy, Y Ozaki and V G Gregoriou Comprehensive Analytical Chemistry 35 19 (2001)

  30. A Milani and C Castiglioni J. Phys. Chem. A 114 624 (2010)

    Article  Google Scholar 

  31. J B Foresman and A E Frisch Exploring Chemistry with Electronic Structure Methods. (Pittsburgh: Gaussian Inc) (1993)

    Google Scholar 

  32. S S Sadeghi, A Phirouznia and V Fallahi Phys. E 70 28 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Sajad Sadeghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, S.S., Simchi, H. Raman spectra and infrared intensities of graphene-like clusters in compared to epitaxial graphene on SiC. Indian J Phys 96, 1911–1919 (2022). https://doi.org/10.1007/s12648-021-02138-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02138-6

Keywords

Navigation