Skip to main content
Log in

Heat transfer analysis on unsteady natural convection flow of silver nanofluid in a porous square cavity using local thermal non-equilibrium model

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This article intends to explore the onset of free convection flow of silver nanofluid in an enclosed square cavity filled with saturated porous medium bounded by adiabatic horizontal walls and isothermal vertical walls at different temperatures using a two-temperature thermal non-equilibrium model. The flow is assumed to follow Darcy law. The governing boundary layer equations are obtained based on Boussinesq approximation and Darcy model. The governing equations for fluid flow are reduced to partial differential equations with the help of non-dimensional transformation. Peaceman–Rachford alternating direction implicit (ADI) scheme is employed to solve the transformed flow equations. The physical clarification of streamlines and isotherms for liquid and solid for pertinent flow parameters is discussed graphically. The physical parameter such as average Nusselt number for fluid and solid phase, for different parameters such as inter-phase heat transfer coefficient and modified conductivity ratio is presented through graphs as well. One of the important findings is that with smaller values of the Rayleigh number Ra the centrally arranged core vortex is formed in streamlines, while the isotherms of liquid and solid phases are stratified in vertical direction close to the vertical walls. Meanwhile, it is also perceived that the vortices expand with an increasing values of Rayleigh number along the horizontal direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

XY :

Dimensionless Cartesian coordinates

xy :

Cartesian coordinates (\(\mathrm {m}\))

V :

Darcian velocity vector

UV :

Dimensionless Darcian velocity components

uv :

Dimensional Darcian velocity components (\(\mathrm {ms^{-1}}\))

g :

Gravitational acceleration (\(\mathrm {ms^{-2}}\))

K :

Permeability of porous medium (\(\mathrm {m^{2}}\))

k :

Thermal conductivity (\(\mathrm {WK^{-1}m^{-1}}\))

h :

Volumetric heat transfer coefficient between solid and fluid (\(\mathrm {WK^{-1}m^{-3}}\))

T :

Temperature (\(\text {K}\))

\(T_{\text {h}}, T_{\text {c}}\) :

Temperature of the hot and cold walls (\(\text {K}\))

\(T_0\) :

Reference temperature (\(\text {K}\))

W :

Cavity length (\(\text {m}\))

t :

Time (\(\text {s}\))

Ra :

Rayleigh number

H :

Inter-phase heat transfer coefficient

\(q_r\) :

Radiation flux (\(\mathrm {Wm^{-2}}\))

\(R_D\) :

Radiation parameter

\(\bar{Nu}\) :

Average Nusselt number

\(\alpha\) :

Thermal diffusivity ratio (\(\mathrm {m^{2}s^{-1}}\))

\(\beta\) :

Coefficient of thermal expansion (\(\mathrm {K^{-1}}\))

\(\mu\) :

Dynamic viscosity (\(\mathrm {Kg m^{-1}s^{-1}}\))

\(\nu\) :

Kinematic viscosity (\(\mathrm {m^{2}s^{-1}}\))

\(\varepsilon\) :

Porosity

\(\psi\) :

Stream function

\(\tau\) :

Dimensionless time

\(\gamma\) :

Modified thermal conductivity ratio

\(\Gamma\) :

Thermal diffusivity ratio

\(\theta\) :

Dimensionless temperature

\(\rho\) :

Density of the fluid (\(\mathrm {Kg m^{-3}}\))

\(\rho c_{\text {p}}\) :

Heat capacitance

\(\rho \beta\) :

Buoyancy coefficient

\(\beta _1\) :

Relaxation parameter

c :

Cold

h :

Hot

nf:

Nanofluid

f :

Fluid

s:

Solid matrix

ij :

Mesh points in X and Y directions

gl :

Maximum number of mesh points in X and Y directions

n :

Time step

References

  1. D A.Nield and A Bejan Convection in Porous Media (New York: Springer) (2006)

    MATH  Google Scholar 

  2. K Vafai Handbook of Porous Media, 3rd ed., (CRC Press) (2015)

  3. O G Martynenko and P P Khramtsov Free-Convective Heat Transfer: With Many Photographs of Flows and Heat Exchange (Berlin: Springer) (2005)

  4. M Mansour, A J Chamkha, R Mohamed, M A El-Aziz and S Ahmed Nonlin. Anal. Model. Contr. 15 55 (2010)

    Article  Google Scholar 

  5. K Yih Int. Commun. Heat Mass Transf. 26 259 (1999)

    Article  Google Scholar 

  6. A C Baytas and I Pop Int. J. Therm. Sci. 41 861 (2002)

    Article  Google Scholar 

  7. O Haddad, M Al-Nimr, A Al-Khateeb Int. J. Heat Mass Transfer 47 2037 (2004)

    Article  Google Scholar 

  8. M Torabi, N Karimi, K Zhang and G Peterson Appl. Therm. Eng. 106 518 (2016)

    Article  Google Scholar 

  9. A Tahmasebi, M Mahdavi and M Ghalambaz Numer. Heat Transf. A 73 254 (2018)

    Article  ADS  Google Scholar 

  10. A Alsabery, H Saleh, I Hashim and P Siddheshwar Int. J. Mech. Sci. 114 233 (2016)

    Article  Google Scholar 

  11. S Sivasankaran, V Sivakumar and A K Hussein Int. Commun. Heat Mass Transf. 46 112 (2013)

    Article  Google Scholar 

  12. W Zhou, Y Yan, X Liu, H Chen and B Liu Int. Commun. Heat Mass Transf. 97 39 (2018)

    Article  Google Scholar 

  13. A A Delouei, M Nazari, M Kayhani and G Ahmadi J. Aerosol Sci. 104 106 (2017)

    Article  ADS  Google Scholar 

  14. S Karimnejad, A A Delouei, M Nazari, M Shahmardan and A Mohamad J. Mol. Liq. 262 180 (2018)

    Article  Google Scholar 

  15. G Seth, R Kumar, A Bhattacharyya J. Mol. Liq. 268 637 (2018)

    Article  Google Scholar 

  16. B Afra, M Nazari, M Kayhani, A A Delouei and G Ahmadi Appl. Math. Model. 55 502 (2018)

    Article  MathSciNet  Google Scholar 

  17. A A Delouei, H Sajjadi, M Izadi, R Mohebbi Appl. Therm. Eng. 146 268 (2019)

    Article  Google Scholar 

  18. R Mohebbi, A A Delouei, A Jamali, M Izadi and A A Mohamad Physica A 525 642 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  19. G Seth, R Kumar and R Tripathi Bulg. Chem. Commun. 52 168 (2019)

    Google Scholar 

  20. A A. Delouei, H Sajjadi, R Mohebbi and M Izadi Ultrason. Sonochem. 51 151 (2019)

    Article  Google Scholar 

  21. S Karimnejad, A A Delouei, M Nazari, M Shahmardan, M Rashidi and S Wongwises J. Therm. Anal. Calorim. 138 4003 (2019)

    Article  Google Scholar 

  22. A Jalali, A Amiri Delouei, M Khorashadizadeh, A Golmohamadi and S Karimnejad J. Appl. Comput. Mech. 6 (2) 307 (2020). https://doi.org/10.22055/JACM.2019.29503.1605

  23. B Afra, A A Delouei, M Mostafavi and A Tarokh J. Mol. Liq. 323 114941 (2021)

    Article  Google Scholar 

  24. I A Badruddin, Z Zainal, P A Narayana and K Seetharamu Int. J. Therm. Sci. 46 20 (2007)

    Article  Google Scholar 

  25. K Mehmood, S Hussain and M Sagheer J. Mol. Liq. 238 485 (2017)

    Article  Google Scholar 

  26. M Sheikholeslami, T Hayat and A Alsaedi Int. J. Heat Mass Transf. 115 981 (2017)

    Article  Google Scholar 

  27. Z Li, M Sheikholeslami, A J Chamkha, Z Raizah and S Saleem Comput. Methods Appl. Mech. Eng. 338 618 (2018)

    Article  ADS  Google Scholar 

  28. M Izadi, G Hoghoughi, R Mohebbi and M Sheremet J. Mol. Liq. 261 357 (2018)

    Article  Google Scholar 

  29. S Mehryan, M Izadi and M. A. Sheremet J. Mol. Liq. 250 353 (2018)

    Article  Google Scholar 

  30. M A Sheremet and I Pop J. Mol. Liq. 266 19 (2018)

    Article  Google Scholar 

  31. M Izadi, S Mehryan, M A Sheremet J. Taiwan Inst. Chem. Eng. 88 89 (2018)

    Article  Google Scholar 

  32. M Ghalambaz, M A Sheremet, S Mehryan, F M Kashkooli and I Pop J. Therm. Anal. Calorim. 135 1381 (2019)

    Article  Google Scholar 

  33. R Ellahi, F Hussain, F Ishtiaq and A Hussain Pramana 93 1 (2019)

    Article  Google Scholar 

  34. M M Bhatti, A Shahid, T Abbas, S Z Alamri and R Ellahi Processes 8 328 (2020)

    Article  Google Scholar 

  35. A Kumar, R Tripathi, R Singh and M A Sheremet Indian J. Phys.(2020)https://doi.org/10.1007/s12648-020-01800-9

    Article  Google Scholar 

  36. S Nazari, R Ellahi, M Sarafraz, M R Safaei, A Asgari and O A Akbari J. Therm. Anal. Calorim. 140 1121 (2020)

    Article  Google Scholar 

  37. R Kumar, A Bhattacharyya, G Seth and A J Chamkha Chinese J. Phys. 69 172 (2021)

    Google Scholar 

  38. A Bhattacharyya, R Kumar and G Seth Indian J. Phys. (2021) https://doi.org/10.1007/s12648-020-01936-8

    Article  Google Scholar 

  39. Y-Y Chen, B-W Li and J-K Zhang Int. J. Heat Mass Transf. 96 84 (2016)

    Article  Google Scholar 

  40. M F Modest McGraw-Hill, New York. (1993)

  41. A Raptis Int. Commun. Heat Mass Transf. 25 289 (1989)

    Article  Google Scholar 

  42. D W Peaceman and H H Rachford Jr J. Soc. Indus. Appl. Math. 3 28 (1955)

    Article  MathSciNet  Google Scholar 

  43. Y Wang, G Qin, W He, Z Bao Int. J. Heat Mass Transf. 121 1055 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Bhattacharyya, A. & Seth, G.S. Heat transfer analysis on unsteady natural convection flow of silver nanofluid in a porous square cavity using local thermal non-equilibrium model. Indian J Phys 96, 2065–2078 (2022). https://doi.org/10.1007/s12648-021-02137-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02137-7

Keywords

Navigation