Skip to main content
Log in

Anisotropic parabolic confinement potential effect on polaron ground state and phonon's number in the RbCl asymmetrical quantum wells

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The effect of anisotropic parabolic confinement potential (APCP) on the strong-coupling (SC) polaron ground state and phonon mean number (PMN) of RbCl asymmetrical semi-exponential quantum wells (ASEQWs) have been investigated on the basis of Lee–Low–Pines (LLP) unitary transformation and linear combination operation methods. It was found that (1) the GSBE and PMN of SC polaron in ASEQWs were decreasing functions of the parameter \(\sigma\) and increasing functions of parameters \(V_{0}\) of asymmetrical semi-exponential potential (ASEP). (2) The GSBE and PMN were elevated with raising the ECSs of APCP along both \(x\) and \(y\) directions. (3) These results could be ascribed to fascinating quantum dimension confinement effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L D Landau Phys. Z. Sowjet. 3 644 (1933)

    Google Scholar 

  2. S H Chen J. Low Temp. Phys. 159 476 (2010)

    Article  ADS  Google Scholar 

  3. V A Holovatsky, O M Voitsekhivska and M Y Yakhnevych Superlattices Microstruct. 116 9 (2018)

    Article  ADS  Google Scholar 

  4. C K Sadem et al. Phys. Lett. A 384 126662 (2020)

    Article  MathSciNet  Google Scholar 

  5. S P Shan and S H Chen Iran. J. Sci. Technol. Trans. Sci 44 1137 (2020)

    Article  MathSciNet  Google Scholar 

  6. P T T Le et al. Phys. B. 592 412279 (2020)

    Article  Google Scholar 

  7. A L Vartanian, M A Yeranosyan, K A Vardanyan and A A Kirakosyan Superlattices Microstruct. 49 382 (2011)

    Article  ADS  Google Scholar 

  8. G Q Hai, F M Peeters and J T Devreese Phys. Rev. B. 42 11063 (1990)

    Article  ADS  Google Scholar 

  9. H Bahramiyan, R Khordad and H R R Sedehi Indian J. Phys. 92 941 (2018)

    Article  ADS  Google Scholar 

  10. R Khordad, B Mirhosseini and M M Mirhosseini J. Low Temp. Phys. 197 95 (2019)

    Article  ADS  Google Scholar 

  11. X Wu, F M Peeters and J T Devreese Phys. Rev. B. 40 4090 (1989)

    Article  ADS  Google Scholar 

  12. Y H Chen, Y Sun, S Y Ji, W Xiong, Z C Pei and Z W Wang Superlattices Microstruct. 144 106573 (2020)

    Article  Google Scholar 

  13. G Q Hai and F M Peeters Phys. Rev. B. 60 8984 (1999)

    Article  ADS  Google Scholar 

  14. N Li, K X Guo and S Shao Superlattices Microstruct. 50 461 (2011)

    Article  ADS  Google Scholar 

  15. R Khordad, S Goudarzi and H Bahramiyan Indian J. Phys. 90 659 (2016)

    Article  ADS  Google Scholar 

  16. G H Liu, K X Guo and Q J Wu Superlattices Microstruct. 52 183 (2012)

    Article  ADS  Google Scholar 

  17. B Xiao K X Guo and S Mou and Z M Zhang Superlattices Microstruct. 69 122 (2014)

    Article  Google Scholar 

  18. J L Xiao Superlattices Microstruct. 120 459 (2018)

    Article  ADS  Google Scholar 

  19. X Q Wang, Y J Chen and J L Xiao Int. J. Mod. Phys. B. 33 1950239 (2019)

    Article  ADS  Google Scholar 

  20. W Xiao, Y J Chen and J L Xiao Chin. J. Phys. 61 190 (2019)

    Google Scholar 

  21. Y L Li and J L Xiao Iran. J. Sci. Technol. Trans. A Sci. 43 2013 (2019)

    Article  Google Scholar 

  22. Y Sun and J L Xiao Superlattices Microstruct. 145 106617 (2020)

    Article  Google Scholar 

  23. J L Xiao J. Low Temp. Phys. 202 196 (2021)

    Article  ADS  Google Scholar 

  24. B Donfack, F Fotio and A J Fotue Eur. Phys. J. Plus 136 241 (2021)

    Article  Google Scholar 

  25. S Mou K X Guo and B Xiao Superlattices Microstruct. 72 72 (2014)

    Article  Google Scholar 

  26. C L Zhao, C Y Cai and J L Xiao Chin. J. Semiconduct. 34 112002 (2013)

    Article  Google Scholar 

  27. T D Lee, F E Low and D Pines Phys. Rev. 90 297 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  28. E. Kartheuser, Dielectric Properties of Polar Crystals, Polarons in Ionic Crystals and Polar Semiconductors, ed. J.T. Devreese, (North-Holland, New york), p. 672 (1972)

  29. Y Sun, Z H Ding and J L Xiao Mater. Express 9 371 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11464033, 11464034), the Natural Science Foundation of Inner Mongolia Autonomous Region of China under Grant No. 2017MS (LH) 0107, and the foundation of Inner Mongolia University of Nationalities (No. NMDYB20041).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Sun or Jing-Lin Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, XJ., Sun, Y. & Xiao, JL. Anisotropic parabolic confinement potential effect on polaron ground state and phonon's number in the RbCl asymmetrical quantum wells. Indian J Phys 96, 1969–1973 (2022). https://doi.org/10.1007/s12648-021-02136-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02136-8

Keywords

Navigation