Skip to main content

Advertisement

Log in

Numerical investigation of ZnO–MWCNTs/ethylene glycol hybrid nanofluid flow with activation energy

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The hybrid nanofluids are finding applications in advanced heat transfer technologies and heat exchangers due to their enhanced thermal conductivity and economic efficiency compared to the monotype nanofluids. In the present article, the heat and mass exchange in the chemically reactive unsteady boundary layer flow of ZnO–MWCNTs/ethylene glycol hybrid nanofluid in the hydromagnetic environment is examined by employing a non-Newtonian flow model and taking into account the Arrhenius activation energy. The flow governing equations are coupled PDEs of highly nonlinear nature, which are solved by shooting strategy. The numerical results for the hybrid nanofluid temperature, Nusselt number, Sherwood number, and skin friction are presented in graphs and discussed comprehensively to understand the impact of various thermofluidic parameters on heat, mass, and flow characteristics of the ZnO–MWCNTs/ethylene glycol hybrid nanofluid. A comparative analysis among Nusselt number profiles of ZnO–MWCNTs/ethylene glycol, TiO2–MWCNTs/ethylene glycol, Al2O3–MWCNTs/ethylene glycol, and Fe3O4–MWCNTs/ethylene glycol is also performed. Numerical results reveal that the maximum enhancement in heat transport rate occurs in the case of ZnO–MWCNTs/EG hybrid nanofluid. The presence of concentration slip and the chemical reaction stimulated by the activation energy augment the mass exchange rate in ZnO–MWCNTs/ethylene glycol hybrid nanofluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

\(T_{{\text{w}}}\) :

Temperature at the surface of stretching sheet (K)

\(u_{{\text{w}}}\) :

Stretching sheet velocity (m s1)

\(u_{\infty }\) :

Ambient fluid velocity (m s1)

\(T_{\infty }\) :

Temperature of the ambient fluid (K)

\(u,v\) :

Velocities in x and r direction respectively (m s1)

\(\kappa\) :

Thermal conductivity (W m1 K1)

\(\sigma\) :

Electrical conductivity (S m1)

\(\mu\) :

Dynamic viscosity (kg m1 s1)

\(\nu\) :

Kinematic viscosity (m2 s1)

\(\rho\) :

Density (kg m3)

\(k_{1}\) :

Second-grade fluid coefficient

\(k_{{\text{r}}}\) :

Chemical reaction rate

\(K\) :

Boltzmann constant

\(E_{{\text{a}}}\) :

Activation energy

\(m\) :

Fitted rate constant

\(D_{0}\) :

Mass diffusivity coefficient

\(m_{1}\) :

Thermal slip factor

\(m_{2}\) :

Concentration slip factor

\(\Pr\) :

Prandtl number \(\left( { = \frac{{\mu_{{\text{f}}} \left( {c_{{\text{p}}} } \right)_{{\text{f}}} }}{{\kappa_{{\text{f}}} }}} \right)\)

\({\text{Ec}}\) :

Eckert number \(\left( { = \frac{{u_{{\text{w}}}^{2} }}{{\left( {c_{{\text{p}}} } \right)_{{\text{f}}} (T_{{\text{w}}} - T_{\infty } )}}} \right)\)

\(A\) :

Unsteadiness parameter \(\left( { = \frac{c}{a}} \right)\)

\({\text{Sc}}\) :

Schmidt number \(\left( { = \frac{{v_{{\text{f}}} }}{{D_{0} }}} \right)\)

\(S\) :

Suction parameter \(\left( { = \frac{{v_{0} }}{{\sqrt {a\nu } }}} \right)\)

\(b^{*}\) :

Second-grade fluid parameter \(\left( { = \frac{{k_{1} a}}{{\mu_{{\text{f}}} (1 - ct)}}} \right)\)

\(M\) :

Magnetic number \(\left( { = \sqrt {\frac{\sigma }{{\rho_{{\text{f}}} a}}} B_{0} } \right)\)

\(d_{1}\) :

Thermal slip parameter \(\left( { = m_{1} \sqrt {\frac{a}{\nu (1 - ct)}} } \right)\)

\(d_{2}\) :

Concentration slip parameter \(\left( { = m_{2} \sqrt {\frac{a}{\nu (1 - ct)}} } \right)\)

\(\delta\) :

Temperature difference parameter \(\left( { = \frac{{T_{{\text{w}}} - T_{\infty } }}{{T_{\infty } }}} \right)\)

\(k^{*}\) :

Chemical reaction rate parameter \(\left( { = \frac{{k_{r}^{2} }}{a}} \right)\)

\(E^{*}\) :

Activation energy parameter \(\left( { = \frac{{E_{{\text{a}}} }}{{KT_{\infty } }}} \right)\)

\(\eta\) :

Non-dimensional space variable

\(\theta\) :

Non-dimensional temperature

\(\phi\) :

Nanoparticle volume fraction

\(\phi_{1}\) :

Volume fraction of ZnO nanoparticles

\(\phi_{2}\) :

Volume fraction of MWCNTs

EG:

Ethylene glycol

SWCNTs:

Single-walled carbon nanotubes

DWCNTs:

Double-walled carbon nanotubes

MWCNTs:

Multi-walled carbon nanotubes

\(\infty\) :

For ambient fluid

\({\text{w}}\) :

For surface of the sheet

hnf:

For hybrid nanofluid

nf:

For nanofluid

f:

For base fluid

\({\text{s}}\) :

For zinc oxide nanoparticles

\({\text{CNTs}}\) :

For multi-walled carbon nanotubes

References

  1. S Jana, A Salehi-Khojin and W H Zhong Thermochim. Acta 462 45 (2007).

    Article  Google Scholar 

  2. S Suresh, K P Venkitaraj, P Selvakumar and M Chandrasekar Colloids Surf. A Physicochem. Eng. Asp. 388 41 (2011).

    Article  Google Scholar 

  3. N N Esfahani, D Toghraie and M Afrand Powder Technol. 323 367 (2018).

    Article  Google Scholar 

  4. J Sarkar, P Ghosh and A Adil Renew. Sustain. Energy Rev. 43 164 (2015).

    Article  Google Scholar 

  5. G Huminic and A Huminic Int. J. Heat Mass Transf. 125 82 (2018).

    Article  Google Scholar 

  6. L S Sundar, M K Singh and A C Sousa Int. Commun. Heat Mass Transf. 52 73 (2014).

    Article  Google Scholar 

  7. Y Tong, T Boldoo and H Cho Energy 196 117086 (2020).

    Article  Google Scholar 

  8. A Afshari, M Akbari, D Toghraie and M E Yazdi J. Therm. Anal. Calorim. 132 1001 (2018).

    Article  Google Scholar 

  9. M Zadkhast, D Toghraie and A Karimipour J. Therm. Anal. Calorim. 129 859 (2017).

    Article  Google Scholar 

  10. A Shahsavar, M R Salimpour, M Saghafian and M B Shafii J. Mech. Sci. Technol. 30 809 (2016).

    Article  Google Scholar 

  11. E Shahsavani, M Afrand and R Kalbasi J. Therm. Anal. Calorim. 131 1177 (2018).

    Article  Google Scholar 

  12. M H Mirbagheri, M Akbari and B Mehmandoust Int. Commun. Heat Mass Transf. 98 216 (2018).

    Article  Google Scholar 

  13. M H Esfe, S Esfandeh and M Rejvani J. Therm. Anal. Calorim. 131 1437 (2018).

    Article  Google Scholar 

  14. M H Esfe, M K Amiri and A Alirezaie J. Therm. Anal. Calorim. 134 1113 (2018).

    Article  Google Scholar 

  15. M H Esfe, S Esfande and S H Rostamian Appl. Therm. Eng. 133 452 (2017).

    Article  Google Scholar 

  16. T Hayat and S Nadeem Res. Phys. 7 2317 (2017).

    Google Scholar 

  17. T Hayat, S Nadeem and A U Khan Can. J. Phys. 97 644 (2019).

    Article  ADS  Google Scholar 

  18. M A Mansour, S Siddiqa, R S R Gorla and A M Rashad Therm. Sci. Eng. Progress 6 57 (2018).

    Article  Google Scholar 

  19. S Das, R N Jana and O D Makinde Defect Diffus. Forum 377 42 (2017).

    Article  Google Scholar 

  20. Z Abdel-Nour et al. J. Therm. Anal. Calorim. 141 1981 (2020).

    Article  Google Scholar 

  21. R Slimani et al. Eur. Phys. J. Appl. Phys. 92 10904 (2020).

    Article  ADS  Google Scholar 

  22. P Prashar, O Ojjela, P K Kambhatla et al Indian J Phys. (2021). https://doi.org/10.1007/s12648-020-01944-8

    Article  Google Scholar 

  23. D Tripathi, J Prakash, M G Reddy and R Kumar Indian J. Phys. (2020). https://doi.org/10.1007/s12648-020-01906-0

    Article  Google Scholar 

  24. S Nadeem and N Abbas Can. J. Phys. 97 392 (2019).

    Article  ADS  Google Scholar 

  25. U Khan, A Zaib and F Mebarek-Oudina Arab. J. Sci. Eng. 45 9061 (2020).

    Article  Google Scholar 

  26. H Hong, B Wright, J Wensel, S Jin, X R Ye and W Roy Syn. Metals 157 437 (2007).

    Article  Google Scholar 

  27. M Sheikholeslami, M Barzegar Gerdroodbary and D D Ganji Comput. Methods Appl. Mech. Eng. 315 831 (2017).

    Article  ADS  Google Scholar 

  28. N Sandeep, A J Chamkha and I L Animasaun J. Braz. Soc. Mech. Sci. and Eng. 39 3635 (2017).

    Article  Google Scholar 

  29. N Acharya and F Mabood J. Therm. Anal. Calorim. 143 1273 (2021).

    Article  Google Scholar 

  30. F Mabood, G P Ashwinkumar and N Sandeep, J. Therm. Anal. Calorim. (2020) https://doi.org/10.1007/s10973-020-09943-x

    Article  Google Scholar 

  31. G S Seth, R Sharma, M K Mishra and A J Chamkha Eng. Comput. 34 603 (2017).

    Article  Google Scholar 

  32. S Mumraiz, A Ali, M Awais, M Shutaywi and Z Shah J. Therm. Anal. Calorim. 143 2135 (2021).

    Article  Google Scholar 

  33. B Mahanthesh, G Lorenzini, F M Oudina and I L Animasaun J. Therm. Anal. Calorim. 141 37 (2020).

    Article  Google Scholar 

  34. S Marzougui, F Mebarek-Oudina, A Assia, M Magherbi, Z Shah and K Ramesh J. Therm. Anal. Calorim. 143 2203 (2021).

    Article  Google Scholar 

  35. F Saba, N Ahmed, U Khan and S T Mohyud-Din Int. J. Heat Mass Transf. 136 186 (2019).

    Article  Google Scholar 

  36. D Lu, M Ramzan, N Ullah, J D Chung and U Farooq Sci. Rep. 7 1 (2017).

    Article  Google Scholar 

  37. M I Khan, S Qayyum, S Farooq, T Hayat and A Alsaedi Pramana J. Phys. 93 62 (2019).

    Article  ADS  Google Scholar 

  38. A Aldabesh, S U Khan, D Habib, H Waqas, I Tlili, M I Khan and W A Khan Alex. Eng. J. 59 4315 (2020).

    Article  Google Scholar 

  39. A S Alshomrani, M Z Ullah, S S Capizzano, W A Khan and M Khan Arab. J. Sci. Eng. 44 579 (2019).

    Article  Google Scholar 

  40. A Zeeshan, N Shehzad and R Ellahi Res. Phys. 8 502 (2018).

    Google Scholar 

  41. N S Khan, P Kumam and P Thounthong Sci. Rep. 10 1 (2020).

    Article  Google Scholar 

  42. A Kumar, R Tripathi, R Singh and M A Sheremet Indian J. Phys. (2020). https://doi.org/10.1007/s12648-020-01800-9

    Article  Google Scholar 

  43. M Irfan, M Khan, W A Khan and L Ahmad Appl. Phys. A 125 179 (2019).

    Article  ADS  Google Scholar 

  44. M I Khan, S Qayyum, S Kadry, W A Khan and S Z Abbas Arab. J. Sci. Eng. 45 4939 (2020). https://doi.org/10.1007/s13369-020-04442-5

    Article  Google Scholar 

  45. A Hamid and M Khan J. Mol. Liquids 262 435 (2018).

    Article  Google Scholar 

  46. D Lu, M Ramzan, S Ahmad, J D Chung and U Farooq Phys. Fluids 29 123103 (2017).

    Article  ADS  Google Scholar 

  47. U Khan, A Zaib, I Khan and K S Nisar J. Mater. Res. Technol. 9 188 (2020).

    Article  Google Scholar 

  48. R K Tiwari and M K Das Int. J. Heat Mass Transf. 50 2002 (2007).

    Article  Google Scholar 

  49. B Prabhavathi, P S Reddy and R B Vijaya Powder Technol. 340 253 (2018).

    Article  Google Scholar 

  50. R Kandasamy, R Mohamad and M Ismoen Eng. Sci. Technol. Int. J. 19 700 (2016).

    Google Scholar 

  51. H I Andersson, J B Aarseth and B S Dandapat Int. J. Heat Mass Transf. 43 69 (2000).

    Article  Google Scholar 

  52. D W Beard and K Walters Mathematical Proceedings of the Cambridge Philosophical Society (Cambridge University Press) vol 60, no. 3 p 667 (1964)

    Article  ADS  Google Scholar 

  53. M Mushtaq, S Asghar and M A Hossain Heat Mass Transf. 43 1049 (2007).

    Article  ADS  Google Scholar 

  54. T Hayat and M Qasim Int. J. Numer. Methods Fluids 66 820 (2011).

    Article  ADS  Google Scholar 

  55. R Cortell Chem. Eng. Process. Process Intensif. 46 721 (2007).

    Article  Google Scholar 

  56. V K Garg and K R Rajagopal Acta Mech. 88 113 (1991).

    Article  MathSciNet  Google Scholar 

  57. V K Garg and K R Rajagopal Mech. Res. Commun. 17 415 (1990).

    Article  Google Scholar 

  58. H Schlichting and K Gersten Boundary-Layer Theory. (New York: Springer) (2016)

    MATH  Google Scholar 

  59. M Tencer, J S Moss and T Zapach IEEE Trans. Compon. Packag. Technolog. 27 602 (2004).

    Article  Google Scholar 

  60. H C Brinkman J. Chem. Phys. 20 571 (1952).

    Article  ADS  Google Scholar 

  61. Y Xuan and W Roetzel Int. J. Heat Mass Transf. 43 3701 (2000).

    Article  Google Scholar 

  62. R L Hamilton and O K Crosser Ind. Eng. Chem. Fundam. 1 187 (1962).

    Article  Google Scholar 

  63. S K Das, S U Choi and H E Patel Heat Transf. Eng. 27 3 (2006).

    Article  ADS  Google Scholar 

  64. Q Z Xue Physica B Condens. Matter 368 302 (2005).

    Article  ADS  Google Scholar 

  65. J C Maxwell A Treatise on Electricity and Magnetism, vol 1. (Oxford: Clarendon Press) (1873)

    MATH  Google Scholar 

  66. I Khan J. Mol. Liquids 233 442 (2017).

    Article  Google Scholar 

  67. S A Devi and S S U Devi Int. J. Nonlinear Sci. Numer. Simul. 17 249 (2016).

    Article  Google Scholar 

  68. N Hu, Z Masuda, C Yan, G Yamamoto, H Fukunaga and T Hashida Nanotechnology 19 215701 (2008).

    Article  ADS  Google Scholar 

  69. S Belhaj and B Ben-Beya Part. Sci. Technol. 37 851 (2019).

    Article  Google Scholar 

  70. P H Miller Jr Phys. Rev. 60 890 (1941).

    Article  ADS  Google Scholar 

  71. E E Hahn J. Appl. Phys. 22 855 (1951).

    Article  ADS  Google Scholar 

  72. B M Arghiropoulos and S J Teichner J. Catal. 3 477 (1964).

    Article  Google Scholar 

  73. H A Mohammed, A N Al-Shamani and J M Sheriff Int. Commun. Heat Mass Transf. 39 1584 (2012).

    Article  Google Scholar 

  74. S Dinarvand and M N Rostami J. Therm. Anal. Calorim. 138 845 (2019).

    Article  Google Scholar 

  75. J P Abulencia and L Theodore Fluid Flow for the Practicing Chemical Engineer, vol 11. (New York: Wiley) (2011)

    Google Scholar 

  76. M R Zangooee, K Hosseinzadeh and D D Ganji Case Stud. Therm. Eng. 14 100460 (2019).

    Article  Google Scholar 

  77. I L Animasaun and N Sandeep Powder Technol. 301 858 (2016).

    Article  Google Scholar 

  78. S Das and R N Jana Alex. Eng. J. 54 55 (2015).

    Article  Google Scholar 

  79. M Imtiaz, T Hayat and A Alsaedi Powder Technol. 310 154 (2017).

    Article  Google Scholar 

  80. M S Kandelousi and R Ellahi Zeitschrift für Naturforschung A 70 115 (2015).

    Article  ADS  Google Scholar 

  81. J Buongiorno ASME J. Heat Transf. 128 240 (2006). https://doi.org/10.1115/1.2150834

    Article  Google Scholar 

  82. M Sheikholeslami and D D Ganji J. Taiwan Inst. Chem. Eng. 65 43 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors owe their deep sense of gratitude to the honorable Vice-Chancellor of Defence Institute of Advanced Technology (Deemed University) for constant encouragement and support in the current research. Also, Miss Preeti is thankful to the Defence Research and Development Organization (DRDO), Government of India, for supporting this work under the Senior Research Fellowship (F-16-52-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odelu Ojjela.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prashar, P., Ojjela, O. Numerical investigation of ZnO–MWCNTs/ethylene glycol hybrid nanofluid flow with activation energy. Indian J Phys 96, 2079–2092 (2022). https://doi.org/10.1007/s12648-021-02132-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02132-y

Keywords

Navigation