Skip to main content

Advertisement

Log in

Aerosol optical properties over Delhi during a dust event in summer 2014: plausible implications

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Delhi experiences frequent dust storms during the pre-monsoon season. We studied one such event that occurred on May 30th, 2014 at New Delhi to understand the changes in the optical properties of aerosols. The present study utilizes the aerosol optical depth (AOD) from the ground and satellite measurements along with reanalysis data. The aerosol characteristics were examined during the pre-week and post-week of the dust storm event. The results show that AOD values reach ~ 1.0 in all the modes of measurements (i.e., sun photometer, MODIS, and MERRA-2) on the dust event day. MODIS-derived Aerosol Angstrom Exponent (AAE), which gradually decreases from 1.7 ± 0.3 to 1.1 ± 0.3, shows the presence of coarse mode particles during the event. The aerosol layer at an elevation from 1 to 2 km was observed using indigenously developed dual-polarization micro-pulse lidar (MPL) system during the dust event. The source of the dust during the storm was identified by the air mass back-trajectories analysis. The dust column mass density averaged 24 hourly at 850 hPa is 780 mg m−2 with a prevailing wind direction of west to east with wind speed of 11–13 ms−1. Shortwave aerosol direct radiative forcing (SWADRF) diurnally averaged at the top of the atmosphere (TOA), the atmosphere (ATM), and surface (SUR) are found to be − 10 W m−2, 27 W m−2, and − 37 W m−2, respectively. The heating rate was enhanced by 56% (from 0.16 to 0.25 K day−1) during the event in the whole atmospheric column. Visibility decreased by 31% during the dust storm day compared with its average value of non-dust storm days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J F Kok et al Nat. Geosci. 10 274 (2017)

    Article  ADS  Google Scholar 

  2. R L Miller I Tegen and J P Perlwitz J. Geophys. Res. D4 109 (2004)

    Google Scholar 

  3. S K Mishra and S Dey and S N Tripathi Geophys. Res. Lett. 35 23 (2008)

    Article  Google Scholar 

  4. A K Srivastava et al Ann. Geophys. 29 789 (2011)

    Article  ADS  Google Scholar 

  5. IPCC report (2013)

  6. D Rosenfeld Y Rudich and R Lahav Natl Acad. Sci. 98 5975 (2001)

    Article  Google Scholar 

  7. C Sarangi and S N Tripathi and Amit Mishra J. Geophys. Res. Atmos. 121 7936 (2016)

    Article  ADS  Google Scholar 

  8. S Kumar S Dey and A Srivastava Sci Total Environ. 550 994 (2016)

    Article  Google Scholar 

  9. S Rémy et al Atmos. Chem. Phys. 15 22 12909 (2015)

    Article  ADS  Google Scholar 

  10. DeMott et al Proceedings Natl. Acad. Sci. USA 107 11217 (2010)

    Article  ADS  Google Scholar 

  11. U C Kulshrestha and D Sharma J. Indian Geophys. Union 19 205 (2015)

    Google Scholar 

  12. S Dey and L Di Girolamo J. Geophys. Res. D15 115 (2010)

    Google Scholar 

  13. S Singh, S Nath and R Kohli and R Singh Geophys Res. Lett. 32 13 (2005)

    Google Scholar 

  14. D M Giles et al J. Geophys. Res. D18 116 (2011)

    Google Scholar 

  15. S K Mishra et al Aerosol Air Qual. Res. 15 974 (2015)

    Google Scholar 

  16. S K Pandey, V Vinoj , K Landu and S S Babu Sci Rep 7 1 (2017)

  17. R Kumar et al Atmos. Chem. Phys. 14 6813 (2015)

    Article  ADS  Google Scholar 

  18. M Chinnam, S Dey and S N Tripathi and M Sharma Geophys Res. Lett. 33 8 (2006)

    Article  Google Scholar 

  19. D G Kaskaoutis et al Atmos. Environ. 79 7 (2013)

    Article  ADS  Google Scholar 

  20. G Pandithurai et al J. Geophys. Res. D13 113 (2008)

    Google Scholar 

  21. D Sharma and D Singh and D G Kaskaoutis Adv Meteorol. 956814 1 (2012)

    Google Scholar 

  22. S Singh et al Annales Geophysicae 28 1157 (2010)

    Article  ADS  Google Scholar 

  23. P Tian et al Atmos. Chem. Phys. 17 1 (2017)

    Article  Google Scholar 

  24. N Huneeus et al Atmos. Chem. Phys. 11 7781 (2011)

    Article  ADS  Google Scholar 

  25. M Komppula et al Atmos. Chem. Phys. 12 4513 (2012)

    Article  ADS  Google Scholar 

  26. R Gautam et al Atmos. Chem. Phys. 11 12841 (2011)

    Article  ADS  Google Scholar 

  27. S K Mishra et al Atmos. Environ. 185 243 (2018)

    Article  ADS  Google Scholar 

  28. P K Dubey et al Int. J. Remote Sens. 32 337 (2011)

    Article  Google Scholar 

  29. F D Fernald Appl. Opt. 23 652 (1984)

  30. M M Rienecker et al J. Clim. 24 3624 (2011)

    Article  ADS  Google Scholar 

  31. A Molod, L Takacs and M Suarez and Bacmeister J. Geosci. Model Dev. 8 1339 (2015)

    Article  ADS  Google Scholar 

  32. G Michael Bosilovich et al Technical report series on global modeling and data assimilation 43 (2016)

  33. K Bali and A K Mishra and S N Singh Atmos Environ. 150 264 (2017)

    Google Scholar 

  34. K N Liou, An Introduction to Atmospheric Radiation, 2nd edn. International Geophysics Series No. 84 (Academic Press, 2002)

  35. L A Remer et al J. Atmos. Sci. 62 947 (2005)

    Article  ADS  Google Scholar 

  36. A Pozzer et al Atmos. Chem. Phys. 15 5521 (2015)

    Article  ADS  Google Scholar 

  37. R C Levy et al Atmos. Chem. Phys. 10 10399 (2010)

    Article  ADS  Google Scholar 

  38. A M Sayer et al J. Geophys. Res. Atmos. 118 7864 (2013)

    Article  ADS  Google Scholar 

  39. B Holben et al Remote Sens. Environ. 66 1 (1998)

  40. B Holben et al. Proc. SPIE, Remote Sensing of the Atmosphere and Clouds 6408 (2006).

  41. A K Prasad et al Atmos. Environ. 41 6289 (2007)

    Article  ADS  Google Scholar 

  42. Y Yarragunta and S Srivastava Remote Sensing of the Atmosphere, Clouds, and Precipitation 9876 98762C (2016)

  43. Aditi Singh, G R Iyengar and John P George Remote Sensing of the Atmosphere, Clouds, and Precipitation VI 9876 98762S (2016)

  44. Sarkar et al GeoHealth 3 67 (2019)

    Article  Google Scholar 

  45. Amit Misra S N Tripathi, D S Kaul and J Welton Ellsworth J. Atmos. Ocean. Tech. 29 1285 (2012)

    Article  Google Scholar 

  46. S Kumar et al Aeolian Research 17 15 (2015)

    Article  ADS  Google Scholar 

  47. S Singh and S N Beegum Geophys. Res. Lett. 40 2444 (2013)

    Article  ADS  Google Scholar 

  48. A K Srivastava, S Singh and S Tiwari and DS Bisht Environ Sci. Pollut. R. 19 1144 (2012)

    Article  Google Scholar 

  49. A Singh and S Dey Atmos. Environ. 62 367 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Director CSIR-NPL for his constant support. One of the author's DS is grateful to CSIR Network project AIM_IGPHim (PSC-0112) for project fellowship and also to the Academy of Scientific and Innovative Research (AcSIR) for facilitating as its Ph.D. student. We are thankful to MODIS NASA for AOD data and GIOVANNI for MODIS Aqua and Terra L3 data. AOD and AAE data from the AERONET site and meteorological data from (www.wunderground.com) are also acknowledged. The authors are also thankful to Global Modelling Assimilation, Maryland, USA, for providing MERRA-2 reanalysis data. The authors are also grateful to Dr. Amit Kumar Mishra for giving his useful feedback in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Radhakrishnan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 2480 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sethi, D., Radhakrishnan, S.R., Sharma, C. et al. Aerosol optical properties over Delhi during a dust event in summer 2014: plausible implications. Indian J Phys 95, 2531–2540 (2021). https://doi.org/10.1007/s12648-021-02092-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02092-3

Keywords

Navigation