Skip to main content
Log in

Waves at the imperfect boundary of elastic and bio-thermoelastic diffusive media

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The present investigation deals with the reflection and transmission phenomena in isotropic elastic half-space (ES) and bio-thermoelastic diffusive half-space (BDS) for the study of plane harmonic waves. The two half-spaces are separated by an imperfect interface and the governing equations for BDS are modified by introducing phase lag parameters in Fourier’s law of heat conduction and Fick’s law of mass diffusion. After expressing the equations in two-dimension, the potential functions are used to simplify the equations for further calculation. The plane P or SV wave is incident from ES which results in two reflected waves in ES and four transmitted waves in BDS. The amplitude ratios are obtained for these reflected and transmitted waves concerening the incident P or SV wave for stiffness forces. The obtained amplitude ratios are further used to drive the energy ratios of various reflected and transmitted waves. These ratios are impacted by the characteristics of the wave and material properties of the media. The resulting energy ratios are computed numerically by developing a numerical algorithm and displayed in the form of graphs to show the effects of blood perfusion rate, lagging times, and stiffness parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F Xu T Lu Springer, http://10.1007/978-3-642-13202-5; ISBN:978-3-642-13202-5. (2011)

  2. WS Shen J Zhang and FQ Yang. (2005) Int. J. Nonlinear Sci. Numer. Sim. 6: 317

    Google Scholar 

  3. W Shen J Zhang and F Yang Math Comput Model. 41 1251 (2005)

    Article  Google Scholar 

  4. X Li Y Zhong R Jazar and A Subic Biomed. Mater. Eng. 24 2299 (2014)

  5. X Li, Y Zhong, A Subic, R Jazar, J Smith and C Gu Technol. Health Care 5625 (2016)

  6. X Li Y Zhong J Smith and C Gu Bioengineered 8 71 (2017)

    Article  Google Scholar 

  7. H H Pennes J. Appl. Physiol. 1 93 (1948)

    Article  ADS  Google Scholar 

  8. C Cattaneo C. R. Acad. Sci. 247 431 (1958)

    Google Scholar 

  9. M.P. Vernotte C. R. Acad. Sci. 246 3154 (1958)

    Google Scholar 

  10. D Y Tzou ASME J. Heat Transf. 117 8 (1995)

    Article  Google Scholar 

  11. R Kumar A K Vashishth and S Ghangas Int. J. Appl. Mech. Eng. 24(3) 603 (2019)

    Article  Google Scholar 

  12. R Kumar A K Vashishth and S Ghangas Arab J. Basic Appl. Sci. 26(1) 78 (2019)

    Article  Google Scholar 

  13. A Ghanmi and Ibrahim A Abbas J. Therm. Biol., 82 229 (2019)

    Article  Google Scholar 

  14. X Li C Li Z Xue and X Tian Int. J. Therm. Sci., 139 339 (2019)

    Article  Google Scholar 

  15. X Li Z Xue and X Tian Int. J. Therm. Sci. 132 249 (2018)

    Article  ADS  Google Scholar 

  16. X Li C Li Z Xue and X Tian Int. J. Therm. Sci. 124 459 (2018)

    Article  Google Scholar 

  17. P Wongchadakula P Rattanadechob and T Wessapanc Int. J. Therm. Sci. 134 321 (2018)

    Article  Google Scholar 

  18. W Nowacki Bull. Acad. Pol. Sci. Ser. Sci. Tech. 22 55 (1974)

    Google Scholar 

  19. W Nowacki Bull. Acad. Pol. Sci. Ser. Sci. Tech. 22 129 (1974)

    Google Scholar 

  20. W Nowacki Bull. Acad. Pol. Sci. Ser. Sci. Tech. 22 257 (1974)

    Google Scholar 

  21. H H Sherief F A Hamza and H A Saleh Int. J. Eng Sci. 42 591 (2004)

    Article  Google Scholar 

  22. R Kumar and T Kansal, J. Mech. Sci. Techn. 24 337 (2010)

    Article  Google Scholar 

  23. A N Eman and Al-Lehaibi Math. Probl. Eng. https://doi.org/10.1155/2018/8781950 (2018)

  24. R Kumar and S Devi Eng. Solid Mech. 271 (2017)

  25. A M Zenkour Results Phys. 11 929 (2018)

    Article  ADS  Google Scholar 

  26. A M Zenkour J. Phys. Chem. Solids 137 109213 (2020)

    Article  Google Scholar 

  27. A M Zenkour Compos. Struct 212 346 (2019)

    Article  Google Scholar 

  28. A M Zenkour J. Ocean Eng. Sci. 5 214 (2020)

    Article  Google Scholar 

  29. M Sobhya and A M Zenkour J. Therm. Stresses 43 1 (2020)

    Article  Google Scholar 

  30. A M Zenkour Int. Commun. Heat Mass Transf 116 104722 (2020)

    Article  Google Scholar 

  31. A M Zenkour Opt Laser Technol. 128 106233 (2020)

    Article  Google Scholar 

  32. A M Zenkour J. Therm. Stresses 128 (2020)

  33. A M Zenkour J. Theor. App. Mech. 56 15 (2018)

    Article  Google Scholar 

  34. A M Zenkour Acta Mech. 56 (2018)

  35. X Fan and K Hynynen J. Acoust. Soc Am. 91 1727 (1992)

    Article  ADS  Google Scholar 

  36. M A Ainsile and P W Burns J.Acoust Soc. Am. 98 2836 (1995)

    Article  ADS  Google Scholar 

  37. R D Borcherdt Geophys. J.Roy.Astron. Soc. 70 621 (1982)

    Article  ADS  Google Scholar 

  38. J D Achenbach North-Holland, Amsterdam (1973)

  39. R. Kumar and V. Gupta J Eng. Phys. Thermophys. 88 252 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suniti Ghangas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$\begin{aligned} A_1&=CH+EC, \ A_2=HB+GC-DF+\omega ^2CH+AH-AF, \ A_3=GB+\omega ^2(HB+GC-DF)+AG, \ A_4=\omega ^2GB,\\ A&=-i\omega \tau _{q2}R_1,\ B=-\omega \tau _{q2}-\tau _{q2}R_3,\ C=-\tau _{T2},\ D=-\omega \tau _{q2}R_2,\ E=\tau _{P2q_1^*},\\ F&=\tau _{P2}q_2^*,\ G=-i\omega \tau _{\eta 2}q_4^*,\ H=-\tau _{P2}q_3^*,\ q_1^*=D\beta _2,\ q_2^*=\frac{Da\rho c_1^2}{\beta _1},\\ q_2^*&=\frac{Db\rho c_1^2}{\beta _2},\ q_4^*=\frac{\rho c_1^4}{\omega _1^* \beta _2},\ \tau _{T2}=1-i\omega \tau _T,\ \tau _{q2}=1-i\omega \tau _q+(-i\omega )^2\frac{\tau _q^2}{2},\ \tau _{P2}=1-i\omega \tau _P,\ \tau _{\eta 2}=1-i\omega \tau _{\eta }+(-i\omega )^2\frac{\tau _{\eta }^2}{2},\\ n_i&=\frac{-(AH-ED)\omega ^4+AH\omega ^2V_i^2}{CH\omega ^4-\omega ^2V_i^2(CG+HB-DF)+BGV_i^4},\\ k_i&=\frac{EC\omega ^6-(EB-AF)\omega ^4V_i^2}{CH\omega ^4-\omega ^2V_i^2(CG+HB-DF)+BGV_i^4}. \end{aligned}$$

Appendix B

$$\begin{aligned} d_{11}&=2\mu ^e\bigg (\frac{\xi _r}{\omega }\bigg )^2-\rho ^ec_1^2,\ d_{12}=2\mu ^e \frac{\xi _r}{\omega }\frac{dV_{\beta }}{\omega },\\ d_{1j}&=\lambda \bigg (\frac{\xi _r}{\omega }\bigg )^2+\frac{\rho c_1^2}{\omega ^2}\bigg [dV_j^2+n_j+k_j\bigg ],\ d_{16}=2\mu \frac{\xi _r}{\omega }\frac{dV_4}{\omega },\\ d_{21}&=2\mu ^e\frac{\xi _r}{\omega }\frac{dV_{\alpha }}{\omega },\ d_{22}=\mu ^e\bigg [\bigg (\frac{dV_{\beta }}{\omega }\bigg )^2+\bigg (\frac{\xi _r}{\omega }\bigg )^2\bigg ],\\ d_{2j}&=2\mu \frac{\xi _r}{\omega }\frac{dV_j}{\omega },\ d_{26}=\mu \bigg [\bigg (\frac{\xi _r}{\omega }\bigg )^2-\bigg (\frac{dV_4}{\omega }\bigg )^2\bigg ],\\ d_{31}&=k_t\frac{\xi _r}{\omega },\ d_{32}=k_t\frac{dV_{\beta }}{\omega },\\ d_{3j}&=2\mu \frac{\xi _r dV_j}{i\omega }-\xi _r\frac{k_t}{\omega }, \ d_{36}=\mu \frac{\xi _r^2-dV_4^2}{i\omega }+k_t\frac{dV_4}{\omega },\\ d_{41}&=-k_n\frac{dV_{\alpha }}{\omega },\ d_{42}=k_n\frac{\xi _r}{\omega },\\ d_{4j}&=-k_n\frac{dV_i}{\omega }+(\rho c_1^2-2\mu )\frac{\xi _r^2}{i\omega }+\frac{\rho c_1^2}{i\omega }(dV_j^ 2+n_j+k_j), \\ d_{46}&=-k_n\frac{\xi _r}{\omega }+2\mu \xi _r\frac{dV_4}{i\omega },\\ d_{51}&=d_{52}=d_{56}=0,\\ d_{5j}&=in_j\frac{dV_j}{\omega },\ d_{61}=d_{62}=d_{66}=0,\\ d_{6j}&=ik_j\frac{dV_j}{\omega },\ j=1,2,3,\\ \frac{dV_{\alpha }}{\omega }&=\bigg (\frac{1}{V_P^2}-\bigg (\frac{\xi _r}{\omega }\bigg )^2\bigg )^{\frac{1}{2}}=\bigg (\frac{1}{V_P^2}-\frac{\sin ^2\theta _0}{V_0^2}\bigg )^{\frac{1}{2}}, \frac{dV_{\beta }}{\omega }=\bigg (\frac{1}{V_S^2}-\frac{\sin ^2\theta _0}{V_0^2}\bigg )^{\frac{1}{2}},\\ \frac{dV_j}{\omega }&=p.v.\bigg (\frac{1}{V_j^2}-\frac{\sin ^2\theta _0}{V_0^2}\bigg )^{\frac{1}{2}}, \ j=1,2,3,4. \end{aligned}$$

Appendix C

$$\begin{aligned} \langle P_{ij}^* \rangle&=-\frac{\omega ^4}{2}Re\bigg [\bigg (2\mu \frac{dV_i}{\omega }\frac{\xi _r}{\omega }\frac{\bar{\xi _r}}{\omega }\bigg )+\bigg (\lambda \bigg (\frac{\xi _r}{\omega }\bigg )^2\frac{\bar{dV_j}}{\omega }+\rho c_1^2\bigg (\frac{dV_i}{\omega }\bigg )^2+\frac{\rho c_1^2 n_i}{\omega ^2}+\frac{\rho c_1^2 k_i}{\omega ^2}\bigg )Z_{i+1}\bar{Z}_{j+2}\bigg ],\\ \langle P_{i4}^* \rangle&=-\frac{\omega ^4}{2}Re \bigg [\bigg (-2\mu \frac{dV_i}{\omega }\frac{dV_4}{\omega }\frac{\xi _r}{\omega }\bigg )Z_{i+2}\bar{Z}_{6}\bigg ],\\ \langle P_{4j}^* \rangle&=-\frac{\omega ^4}{2}Re \bigg [\bigg (\mu \bigg (\frac{\xi _r}{\omega }-\frac{dV_4}{\omega }\bigg )\frac{\bar{\xi _r}}{\omega }+2\mu \frac{\xi _r}{\omega }\frac{dV_4}{\omega }\frac{dV_j}{\omega }\bigg )Z_6\bar{Z}_{j+2}\bigg ],\\ \langle P_{44}^* \rangle&=-\frac{\omega ^4}{2}\bigg [\bigg ( \mu \bigg (\bigg (\frac{\xi _r}{\omega }\bigg )^2-\bigg (\frac{dV_4}{\omega }\bigg )^2\bigg )\frac{\bar{dV}_4}{\omega }+2\mu \frac{\xi _r}{\omega }\frac{\bar{\xi _r}}{\omega }\frac{dV_4}{\omega }\bigg ) Z_6\bar{Z}_6 \bigg ]. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Ghangas, S. & Vashishth, A.K. Waves at the imperfect boundary of elastic and bio-thermoelastic diffusive media. Indian J Phys 96, 1301–1314 (2022). https://doi.org/10.1007/s12648-021-02084-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02084-3

Keywords

Navigation