Skip to main content
Log in

The Hubble tension: Change in dark energy or a case for modified gravity?

  • Short Research Communication
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Recently, much controversy has been raised about the cosmological conundrum involving the discrepancy in the value of the Hubble constant as implied by Planck satellite observations of the CMBR in the early Universe and that deduced from other distance indicators (for instance using standard candles like supernovae, tip of the red giant branch, etc.) in the present epoch. The Planck estimate is about \( 67\; {\text{km}}^{ - 1} \;{\text{Mpc}}^{ - 1} \), while that deduced from distance indicators at the present epoch is around \( 73 - 74 \;{\text{km}}^{ - 1} \;{\text{Mpc}}^{ - 1} \). Also the independent determination of the local value of the Hubble constant based on a calibration of the tip of the red giant branch and applied to Type Ia supernovae found a value of \( 69.8\;{\text{km}}^{ - 1} \;{\text{Mpc}}^{ - 1} \). Here we propose a modification of the gravitational field on large scales as an alternate explanation for this discrepancy in the value of the Hubble constant as implied in the above-mentioned method, i.e., by Planck observations of the CMBR in the early Universe, and that deduced from other distance indicators in the present epoch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. E J Baxter and B D Sherwin Mon. Not. R. Astron. Soc. 501 1823 (2021)

    Article  ADS  Google Scholar 

  2. S Mukherjee et al. arXiv:2009.14199 [astro-ph.CO] (2020)

  3. J Soltis, S Casertano and A G Riess arXiv:2012.09196 [astro-ph.GA] (2020)

  4. A G Riess et al. arXiv:2012.08534 [astro-ph.CO] (2020)

  5. K Dutta et al. Phys. Rev. D. 100 103501 (2019)

    Article  ADS  Google Scholar 

  6. W Freedman et al. Astrophys. J. 882 34 (2019)

    Article  ADS  Google Scholar 

  7. D Alberto et al. Astrophys. J. 885 137 (2019)

    Article  Google Scholar 

  8. A G Riess et al. Astrophys. J. 876 85 (2019)

    Article  ADS  Google Scholar 

  9. G Pietrzynski et al. Nature 567 200 (2019)

    Article  ADS  Google Scholar 

  10. A G Riess et al. Astrophys. J. 861 126 (2018)

    Article  ADS  Google Scholar 

  11. A G Riess et al. Astrophys. J. 855 136 (2018)

    Article  ADS  Google Scholar 

  12. P A R Ade et al. Astron. Astrophys. 594 A13 (2016)

    Article  Google Scholar 

  13. N Aghanim et al. arXiv:1807.06209v2 [astro-ph.CO] (2018)

  14. N Aghanim et al. Astron. Astrophys. 641 A6 (2020)

    Article  Google Scholar 

  15. J Ryan, Y Chen and B Ratra Mon. Not. R. Astron. Soc. 488 3844 (2019)

    Article  ADS  Google Scholar 

  16. E Aubourget al. Phys. Rev. D 92 123516 (2015)

    Article  ADS  Google Scholar 

  17. G C-F Chen et al. arXiv:1907.02533 [astro-ph.CO] (2019)

  18. S Birrer et al. Mon. Not. R. Astron. Soc. 484 4726 (2018)

    Article  ADS  Google Scholar 

  19. W L Freedman et al. Astrophys. J. 882 34 (2019)

    Article  ADS  Google Scholar 

  20. T de Jaeger et al. arXiv:2006.03412 [astro-ph.CO] (2020)

  21. W D’Arcy Kenworthy, D Scolnic and A G Riess Astrophys. J. 875 145 (2019)

  22. R Anderson and A G Riess Astrophys. J. 861 36 (2018)

    Article  ADS  Google Scholar 

  23. D Jones et al. arXiv:1805.05911 [astro-ph.CO] (2018)

  24. A G Riess et al. Astrophys. J. 826 56 (2016)

    Article  ADS  Google Scholar 

  25. M Cerdonio arXiv:1906.07080v3 [gr-qc] (2019)

  26. A Genova et al. Nature Commun. 9 289 (2018)

    Article  ADS  Google Scholar 

  27. C Sivaram Int. J. Mod. Phys. D 26 1743010 (2017)

  28. L Rebecca, K Arun and C Sivaram Astrophys. Space Sci. 363 149 (2018)

    Article  ADS  Google Scholar 

  29. L Rebecca, K Arun and C Sivaram Indian J. Phys. 94 1491 (2019)

    Google Scholar 

  30. M Milgrom arXiv:1703.06110v3 [astro-ph.GA] (2017)

  31. M Milgrom arXiv:1910.04368 [astro-ph.GA] (2019)

  32. C Sivaram, K Arun and L Rebecca J. Astrophys. Astron. 41 4 (2020)

    Article  ADS  Google Scholar 

  33. M Milgrom Astrophys. J. 270 365 (1983)

  34. K Arun, S B Gudennavar and C Sivaram Adv. Space Res. 60 166 (2017)

    Article  ADS  Google Scholar 

  35. P M Ogle et al. Astrophys. J. Lett. 884 L11 (2019)

    Article  ADS  Google Scholar 

  36. P M Ogle et al. Astrophys. J. 817 109 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenath Arun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivaram, C., Arun, K. & Rebecca, L. The Hubble tension: Change in dark energy or a case for modified gravity?. Indian J Phys 96, 1289–1292 (2022). https://doi.org/10.1007/s12648-021-02080-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02080-7

Keywords

Navigation