Skip to main content

Advertisement

Log in

Investigation of the magicity in some even–even Ca isotopes by using shell model and Hartree–Fock–Bogoliubov method

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the present work, the bulk nuclear properties and features of some of the excited states in the neutron-rich even–even 46−54Ca isotopes have been investigated. In order to identify the magicity and the existence of new magic numbers in these isotopes, the shell model and Hartree–Fock–Bogoliubov method were implemented based on Skyrme parameterizations. In particular, root-mean-square charge radius, binding energies, one- and two-neutron separation energies, pairing gaps, reduced transition probabilities, excitation energies, energy levels, and quadrupole deformation parameters have been investigated. The calculated results were compared with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M G Mayer Phys. Rev. 75 1969 (1949).

    Article  ADS  Google Scholar 

  2. O Haxel, J H D Jensen and H E Suess Phys. Rev. 75 1766 (1949).

    Article  ADS  Google Scholar 

  3. T Otsuka, R Fujimoto, Y Utsuno, B A Brown, M Honma and T Mizusaki Phys. Rev. Lett. 87 082502 (2001).

    Article  ADS  Google Scholar 

  4. A A Alzubadi, R A Radhi and N S Manie Phys. Rev. C 97 024316 (2018).

    Article  ADS  Google Scholar 

  5. A de Shalit and I Talmi Nuclear Shell Theory. (: Dover Publications) (2004)

    Google Scholar 

  6. J Bardeen, L N Cooper and J R Schrieffer Phys. Rev. 108 1175 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  7. A Gade and T Glasmacher Prog. Part. Nucl. Phys. 60 161 (2008).

    Article  ADS  Google Scholar 

  8. P Maierbeck et al Phys. Lett. B 675 22 (2009).

    Article  ADS  Google Scholar 

  9. D Steppenbeck et al Nature 502 207 (2013).

    Article  ADS  Google Scholar 

  10. F Wienholtz et al Nature 498 346 (2013).

    Article  ADS  Google Scholar 

  11. R Bhattacharya Pramana J. Phys. 83 4 (2014).

    Google Scholar 

  12. B A Brown Lecture Notes in Nuclear Structure Physics National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, E. Lansing, MI 48824 (2005) (unpublished)

  13. A Bohr and B R Mottelson Nuclear Structure, vol 1. (Singapore: World Scientific) (1988)

    MATH  Google Scholar 

  14. P J Brussard and P W M Glaudemans Shell Model Applications in Nuclear Spectroscopy. (Amsterdam: North-Holland Publishing Company) (1977)

    Google Scholar 

  15. W A Richter, M G Van Der Merwe, R E Julies and B A Brown Nucl. Phys. A 523 325 (1991).

    Article  ADS  Google Scholar 

  16. A G M van Hees and P W M Glaudemans Z. Phys. A 303 267 (1981).

    Article  ADS  Google Scholar 

  17. J B McGrory and B H Wildenthal Phys. Lett. 103B 173 (1981).

    Article  ADS  Google Scholar 

  18. Y Utsuno, T Otsuka, B A Brown, M Honma, T Mizusaki and N Shimizu Phys. Rev. C 86 051301(R) (2012).

    Article  ADS  Google Scholar 

  19. S Burrello Effective interactions and pairing correlations: from nuclei to compact stars. (: Anno Accademico) (2016)

    Google Scholar 

  20. E Chabanat, P Bonche, P Hansel, J Meyer and R Schaeffer Nucl. Phys. A 627 710 (1997).

    Article  ADS  Google Scholar 

  21. J Stone and P-G Reinhard Prog. Part. Nucl. Phys. 58 587 (2007).

    Article  ADS  Google Scholar 

  22. J Kvasil Nuclear Structure and Nuclear Processes (Prague: Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University) (2013)

  23. P Ring and P Schuck The Nuclear Many Body Problem. (Berlin: Springer) (1980)

    Book  Google Scholar 

  24. D J Rowe Nuclear Collective Motion Models and Theory. (Singapore: World Scientific Publishing Co. Pvt. Ltd.) (2010)

    Book  Google Scholar 

  25. B A Brown and W D M Rae Nucl. Data. Sheets 120 115 (2014).

    Article  ADS  Google Scholar 

  26. W D Rae NuShellX, http://www.garsington.eclipse.co.uk

  27. M V Stoitsova, J Dobaczewski, W Nazarewicz and P Ring Comput. Phys. Commun. 167 43 (2005).

    Article  ADS  Google Scholar 

  28. E Chabanat, P Bonche, P Haensel, J Meyer and R Schaeffer Nucl. Phys. A 635 231 (1998).

    Article  ADS  Google Scholar 

  29. Y Xu, H Guo, Y Han and Q Shen J. Phys. G Nucl. Part. Phys. 41 015101 (2014).

    Article  ADS  Google Scholar 

  30. B Brown et al Phys. Rev. C 76 034305 (2007).

    Article  ADS  Google Scholar 

  31. P-G Reinhard and E W Otten Nucl. Phys. A 420 173 (1984).

    Article  ADS  Google Scholar 

  32. I Angeli At. Data Nucl. Data Tables 99 69 (2013).

    Article  ADS  Google Scholar 

  33. National Nuclear Data Center Brookhaven National Laboratory http://www.nndc. bnl.gov/

  34. S Michimasa, M Kobayashi, Y Kiyokawa, S Ota, D S Ahn and H Baba Phys. Rev. Lett. 121 022506 (2018).

    Article  ADS  Google Scholar 

  35. T Uesaka S Shimoura and H Sakai Prog Theor. Exp. Phys. 2012 03C007 (2012).

    Google Scholar 

  36. S R Stroberg et al Phys. Rev. Lett. 118 032502 (2017).

    Article  ADS  Google Scholar 

  37. IAEA, Nuclear Data Services, https://www-nds.iaea.org

  38. J B McGrory and B H Wildenthal Phys. Lett. B 103 173 (1981).

    Article  ADS  Google Scholar 

  39. Y Utsuno, T Otsuka, B A Brown, M Honma, T Mizusaki and N Shimizu Phys. Rev. C 86 051301 (2012).

    Article  ADS  Google Scholar 

  40. R F G Ruiz et al Nat. Phys. 12 594 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Alzubadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzubadi, A.A., Allawi, R.A. Investigation of the magicity in some even–even Ca isotopes by using shell model and Hartree–Fock–Bogoliubov method. Indian J Phys 96, 1205–1216 (2022). https://doi.org/10.1007/s12648-021-02052-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02052-x

Keywords

Navigation