Skip to main content
Log in

Comparative study of predicted MAX phase Hf2AlN with recently synthesized Hf2AlC: a first principle calculations

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The physical properties including thermodynamic and optical properties, electronic charge density, Fermi surface, Mulliken bond overlap population and Vickers hardness of newly synthesized MAX phase Hf2AlC and predicted Hf2AlN phase have been explored using density functional theory for the first time. We revisit lattice and elastic constants, band structure and density of states to weigh the reliability of our calculations. The mechanical and dynamical stabilities of these compounds have been ensured. The brittle nature of Hf2AlX (X = C and N) compounds is also confirmed by the Pugh (G/B > 0.57) and Poisson ratio (< 0.26). The electronic band structure and density of states show the metallic conductivity with foremost contribution of Hf-5d states at the Fermi level. The mixture of covalent, metallic and ionic bonding is ensured by Mulliken population and charge density mapping. Low Vicker hardness value indicates soft material and easily mechinable nature of the phases. The reflectivity curves show the maximum values of 93% at 10.3 eV and 99% at 13.7 eV for the compounds Hf2AlC and Hf2AlN, respectively, that endorse the capability of reducing solar heating of these compounds. Excellent correlations are also found in all physical properties of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H Nowotny Prog. Solid State Chem. 2 27 (1970).

    Article  Google Scholar 

  2. M W Barsoum Prog. Solid State Chem. 28 201 (2001)

  3. M W Barsoum MAX Phases: Properties of Machinable Ternary Carbides and Nitrides. (Germany, Wiley-VCH) (2013)

  4. M W Barsoum and M Radovic Annu. Rev. Mater. Res. 41 195 (2011).

    Article  ADS  Google Scholar 

  5. P Eklund, M Beckers, U Jansson, H Högberg and L Hultman Thin Solid Films 518 1851 (2010).

    Article  ADS  Google Scholar 

  6. M Naguib, G Bentzel, J Shah and M Barsoum Mater Res Lett. 2 233 (2014).

    Article  Google Scholar 

  7. D Horlait, S Grasso, A Chroneos and W E Lee Mater Res Lett. 4 137 (2016).

    Article  Google Scholar 

  8. H Yoo, M W Barsoum and T El-Raghy Nature (London) 407 581 (2000).

    Article  ADS  Google Scholar 

  9. T El-Raghyet and M W Barsoum J. Am. Ceram. Soc. 82 2855 (1999).

    Article  Google Scholar 

  10. M W Barsoum, L Farber and T El-Raghy Metal. Mater. Trans. A 30 1727 (1999).

    Article  Google Scholar 

  11. Z M Sun, H Hashimoto, Z F Zhang, S L Yang and S Tada Mater. Trans. 47 170 (2006).

    Article  Google Scholar 

  12. P Finkel, M W Barsoum and T El-Raghy J. Appl. Phys. 87 1701 (2000).

    Article  ADS  Google Scholar 

  13. M W Barsoum Physical properties of the MAX phases (Encyclopedia of Materials: Science and Technology, Elsevier, Amsterdam) (2009)

  14. M Radovic, M W Barsoum, T El-Raghy and S M Wiederhorn J. Alloys Compds. 361 299 (2003).

    Article  Google Scholar 

  15. C J Gilbert, D R Bloyer, M W Barsoum, T El-Raghy, A P Tomsia and R O Ritchie Script. Mater. 42 761 (2000).

    Article  Google Scholar 

  16. M Sundberg, G Malmqvist, A Magnusson and T El-Raghy Ceram. Int. 30 1899 (2004).

    Article  Google Scholar 

  17. Z M Sun Intern. Mater. Rev. 56 143 (2011)

  18. C Hu, H Zhang, F Li, Q Huang and Y Bao Int J Refract Met Hard Mater. 36 300 (2013).

    Article  Google Scholar 

  19. S Aryal, R Sakidja, M W Barsoum and W M Ching Phys. Status Solidi B 251 1480 (2014).

    Article  ADS  Google Scholar 

  20. G Surucu, K Colakoglu, E Deligoz and N Korozlu J. Electron. Mater. 45 4256 (2016).

    Article  ADS  Google Scholar 

  21. X He, Y Bai, C Zhu, Y Sun, M Li and M W Barsoum Comput. Mater. Sci. 49 691 (2010).

    Article  Google Scholar 

  22. A Chowdhury, M A Ali, M M Hossain, M M Uddin, S H Naqib and A K M A Islam Phys. Status Solidi B 255 1700235 (2017).

    Article  ADS  Google Scholar 

  23. A Talapatra, T Duong, W Son, H Gao, M Radovic and R Arróyave Phys. Rev. B 94 104106 (2016).

    Article  ADS  Google Scholar 

  24. M A Ali, M T Nasir, M R Khatun, A K M A Islam and S H Naqib Chin. Phys. B 25 103102 (2016).

    Article  ADS  Google Scholar 

  25. G Qing-He et al. Comput. Mater. Sci. 118 77 (2016).

    Article  Google Scholar 

  26. M A Ali, M S Ali and M M Uddin Ind. J. Pur. Appl. Phys. 54 386 (2016).

    Google Scholar 

  27. M Ashton, R G Hennig, S R Broderick, K Rajan and S B Sinnott Phys. Rev. B 94 054116 (2016).

    Article  ADS  Google Scholar 

  28. J Zhu, A Chroneos and U Schwingenschlögl Phys. Status Solidi RRL 9 726 (2015).

    Article  Google Scholar 

  29. Z Sun, D Music, R Ahuja, S Li and J M Schneider Phys. Rev. B 70 092102 (2004).

    Article  ADS  Google Scholar 

  30. H Nowotny Angew. Chem. 11 906 (1972)

  31. T El-Raghy, S Chakraborty and M W Barsoum J. Eur. Ceram. Soc. 20 2619 (2000).

    Article  Google Scholar 

  32. W Jeitschko, H Nowotny and F Benesovsky Monatsh Chem. 94 1201 (1963).

    Article  Google Scholar 

  33. B Daoudi, A Yakoubi, L Beldi and B Bouhafs Acta Mater. 55 4161 (2007).

    Article  ADS  Google Scholar 

  34. D J Tallman, B Anasori and M W Barsoum Mater. Res. Lett. 3 115 (2013).

    Article  Google Scholar 

  35. M Naguib, V N Mochalin, M W Barsoum and Y Gogotsi Adv. Mater. 26 992 (2014).

    Article  Google Scholar 

  36. M Naguib et al. Adv. Mater. 23 4248 (2011)

  37. M Khazaei, M Arai, T Sasaki, M Estili and Y Sakka J. Phys. Condens. Matter. 26 505503 (2014).

    Article  Google Scholar 

  38. G Surucu, A Gencer, X Wang and O Surucu J. Alloys Compd. 819 153256 (2020).

    Article  Google Scholar 

  39. P Chakraborty, A Chakrabarty, A Dutta and T Saha-Dasgupta Phys. Rev. Mater. 2 103605 (2018).

    Article  Google Scholar 

  40. A Gencer and G Surucu Mater. Res. Express. 5 076303 (2018).

    Article  ADS  Google Scholar 

  41. T Rackl and D Johrendt Solid State Sci. 106 106316 (2020).

    Article  Google Scholar 

  42. G Surucu Mater. Chem. Phys. 203 106 (2018)

  43. M A Ali, M M Hossain, A K M A Islam and S H Naqib, https://arxiv.org/abs/2009.05707v1

  44. G Surucu and A Erkisi Mater. Res. Express 4 106520 (2017).

    Article  ADS  Google Scholar 

  45. A Bouhemadou High Pressure Res. 28 45 (2008)

  46. T Lapauw et al. Inorg. Chem. 55 10922 (2016)

  47. A H Reshak, Z Charifi and H Baaziz J. Phys. Condens. Matter 20 325207 (2008).

    Article  Google Scholar 

  48. M Xu, S Wang, G Yin, J Li, Y Zheng, L Chen and Y Jia Appl. Phys. Lett. 89 151908 (2006).

    Article  ADS  Google Scholar 

  49. C Li, B Wang, Y Li and R Wang J. Phys. D: Appl. Phys. 42 065407 (2009).

    Article  ADS  Google Scholar 

  50. Y L Du, Z M Sun, H Hashimoto and W B Tian Mater. Trans. 50 2173 (2009).

    Article  Google Scholar 

  51. M C Payne, M P Teter, D C Allan, T A Arias and J D Joannopoulos Rev. Mod. Phys. 65 1045 (1992).

    Article  ADS  Google Scholar 

  52. M D Segall et al. J. Phys.: Condens. Matter 14 2717 (2002)

  53. J P Perdew and K Ernzerof Phys. Rev. Lett. 77 3865 (1996).

    Article  ADS  Google Scholar 

  54. D Vanderbilt Phys. Rev. B 41 7892 (1990)

  55. H J Monkhorst J. Pack, Phys. Rev. 13 5188 (1976)

  56. T H Fischer and J Almlöf J. Phys. Chem. 96 9768 (1992).

    Article  Google Scholar 

  57. M Born Math. Proc. Camb. Philos. Soc. 36 160 (1940)

  58. M Magnuson and M Mattesini Thin Solid Films 621 108 (2017).

    Article  ADS  Google Scholar 

  59. P Ravindran, L Fast, P A Korzhavyi, B Johnnsson and J Wills O Eriksson J. Appl. Phys. 84 4891 (1998).

    Article  ADS  Google Scholar 

  60. R Hill Proc. Phys. Soc. London A 65 349 (1952)

  61. A A Maradudin and E W Montroll G H Weiss and I P Ipatova Theory of Lattice Dynamics in the Harmonic Approximation. (New York: Academic Press) (1971)

    Google Scholar 

  62. S F Pugh Philos. Mag. 45 823 (1954)

  63. I N Frantsevich, F F Voronov and S A Bokuta Naukova Dumka (Kiev) pp. 60 (1983)

  64. V V Bannikov, I R Shein and A L Ivanovskii Phys. Stat. Sol. (RRL) 3 89 (2007)

  65. H Fu, D Li, F Peng, T Gao and X Cheng Comput. Mater. Sci. 44 774 (2008).

    Article  Google Scholar 

  66. H M Ledbetter J. Phys. Chem. 6 1181 (1977)

  67. S I Ranganathan and M Ostoja-Starzewski Phys. Rev. Lett. 101 055504 (2008).

    Article  ADS  Google Scholar 

  68. M A Ali, M A Hadi, M M Hossain, S H Naqib and A K M A Islam Physica Status Solidi B 254 1700010 (2017).

    Article  ADS  Google Scholar 

  69. F Ernst, M Ruhle (eds.) High-Resolution Imaging and Spectrometry of Materials (Berlin: Springer) (2003)

    Google Scholar 

  70. J S Tse J. Superhard Materials 32 177 (2010)

  71. J Haines, J M Leger and G Bocquillon Annu. Rev. Mater. Res. 31 1 (2001).

    Article  ADS  Google Scholar 

  72. F M Gao Phys. Rev. B 73, 132104 (2006)

  73. Y H Gou, L Hou, J Zhang and F M Gao Appl. Phys. Lett. 92 24190 (2008).

    Article  Google Scholar 

  74. P Li, G Gao, Y Wang and Y Ma J. Phys. Chem. C 114 21745 (2010).

    Article  Google Scholar 

  75. M A Omar Elementary Solid State Physics: Principles and Application (Addison-Wesley, Massachusetts) (1975)

  76. K Refson, S J Clark and P R Tulip Phys. Rev. B 73 155114 (2006).

    Article  ADS  Google Scholar 

  77. Materials Studio CASTEP Manual & Accelrys http://www.tcm.phy.cam.ac.uk/castep/documentation/WebHelp/content/modules/castep/thcastepthermo.htm (2010)

  78. S Baroni, S de Gironcoli, A D Corso and P Gianozzi Rev. Mod. Phys. 73 515 (2001).

    Article  ADS  Google Scholar 

  79. P Debye Ann. Phys. (Leipzig) 39 789 (1912)

  80. A T Petit and P L Dulong Ann. Chem. Phys. 10 395 (1981).

    Google Scholar 

  81. O L Anderson J. Phys. Chem. Solids 24 909 (1963)

  82. S Li, R Ahuja, M W Barsoum, P Jena and B Johansson Appl. Phys. Lett. 92 221907 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M M Uddin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uddin, M.M., Ali, M.A., Hossain, M.M. et al. Comparative study of predicted MAX phase Hf2AlN with recently synthesized Hf2AlC: a first principle calculations. Indian J Phys 96, 1321–1333 (2022). https://doi.org/10.1007/s12648-021-02050-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02050-z

Keywords

Navigation