Skip to main content

Advertisement

Log in

Variation in electronic and optical responses due to phase transformation of SrZrO3 from cubic to orthorhombic under high pressure: a computational insight

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, phase transition in SrZrO3 under high pressure has been investigated computationally using first principles calculation with ultra-soft pseudo-potential and generalized gradient approximation suggested by Perdew, Burke, and Ernzerhof correlation functional. The point where the enthalpy vs pressure curves of cubic and orthorhombic phases coincide is observed for the evaluation of phase transition pressure. The phase transition from cubic to orthorhombic has been observed at 72.0 GPa pressure. At phase transition, the electronic band gap, total density of states, lattice parameter, volume and optical properties of SrZrO3 are explored. The band gap as well as the lattice parameter and volume reduce during phase transformation from cubic to orthorhombic. The band gap values at 67.0 GPa for cubic and orthorhombic phases are simultaneously 3.418 eV and 4.117 eV whereas at final pressure of 74.0 GPa, these values are 3.368 eV and 4.108 eV, respectively. The calculated and reported values of refractive index, dielectric function and absorption spectra are comparable. The calculated values of static refractive index are 2.1 and 2.2 for cubic and orthorhombic SrZrO3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R H Buttner and E N Maslen Acta Crystallogr. Sect. B 48 644 (1992)

    Google Scholar 

  2. R Terki, H Feraoun, G Bertrand and H Aourag Phys. Stat. Sol. 242 1054 (2005)

    Article  ADS  Google Scholar 

  3. C E Runge, A Kubo, B Kiefer, Y Meng, V B Prakapenka, G Shen, R J Cava and T S Duffy Phys. Chem. Miner. 33 699 (2006)

    Article  ADS  Google Scholar 

  4. S Cabuk, H Akkus and A M Mamedov Physica B 394 81 (2007)

    Article  ADS  Google Scholar 

  5. H Wang, B Wang, R Wang and Q Li Physica B 390 96 (2007)

    Article  ADS  Google Scholar 

  6. R Davies and M Islam, J Gale Solid State Ionics 126 323 (1999)

    Article  Google Scholar 

  7. Z Wu, H X Liu, M H Cao, Z Shen, Z Yao, H Hao and D B Luo J. Ceramic Soc. Jpn. 116 345 (2008)

    Article  Google Scholar 

  8. S Kumar, R Kumar, C Cattani and B Samet Solitons & Fractals 135 109811 (2020)

    Article  Google Scholar 

  9. Z Odibat and S Kumar J. Comput. Nonlinear Dyn14 081004 (2019)

    Article  Google Scholar 

  10. R V Shende, D S Krueger, G A Rossetti and S J Lombardo J. Am. Ceram. Soc. 84 1648 (2001)

    Article  Google Scholar 

  11. N Fukatsu, N Kurita, T Yajima, K Koide and T Ohashi J. Alloys Compounds 231 706 (1995)

    Article  Google Scholar 

  12. T Yajima, H Suzuki, T Yogo and H Iwahara Solid State Ionics 51 101 (1992)

    Article  Google Scholar 

  13. H Iwahara, Y Tamotsu, H Takashi and U Haruhisa J. Electrochem. Soc. 140 1687 (1993)

    Article  ADS  Google Scholar 

  14. L Weston, A Janotti, X Y Cui, B Himmetoglu, C Stampfl and C G Van de Walle Phys. Rev. B 92 085201 (2015)

    Article  Google Scholar 

  15. M A Ghebouli, T Chihi, F Dahmane, B Ghebouli, M Fatmi, T Seddik, A Abdiche and R Khenata Chin. J. Phys. 56 515 (2018)

    Google Scholar 

  16. S Kumar, K S Nisar, R Kumar, C Cattani and B Samet Math. Methods Appl. Sci. 43 4460 (2020)

    Google Scholar 

  17. S Kumar, A Kumar, S Abbas, M Al Qurashi and D Baleanu Adv. Differ. Equ. 2020 1 (2020)

    Google Scholar 

  18. S Kumar, S Ghosh and B Samet, E F D Goufo Math. Methods Appl. Sci. 43 6062 (2020)

    Article  ADS  Google Scholar 

  19. D Souptel, G Behr and A Balbashov J. Cryst. Growth 236 583 (2002)

    Article  ADS  Google Scholar 

  20. J Muscat, A Wander and N Harrison Chem. Phys. Lett. 342 397 (2001)

    Article  ADS  Google Scholar 

  21. J R Sambrano, J B L Martins, J Andres and L Elson Int. J. Quant. Chem. 85 44 (2001)

    Article  Google Scholar 

  22. M D Segall, J D Lindan, M J Probert, C J Pickard, P J Hasnip, S JClark and M C Payne J. Phys.: Condens. Matter 14 2717 (2002)

    ADS  Google Scholar 

  23. K. Momma and F Izumi J. Appl. Crystallogr. 44 653 (2011)

    Google Scholar 

  24. S Kumar, R Kumar, R P Agarwal and B Samet Math. Methods Appl. Sci. 43 5564 (2020)

    Article  ADS  Google Scholar 

  25. P Veeresha, D G Prakasha and S Kumar Math. Methods Appl. Sci. https://doi.org/10.1002/mma.6335 (2020)

  26. A Alshabanat, M Jleli, S Kumar and B Samet FrP 8 64 (2020)

    Google Scholar 

  27. J Stewart Clark, D Matthew, Segall, Chris J Pickard, J Phil Hasnip, I J Matt Probert, Keith Refson, C Mike and Payne Crystal. Mater. 220 567 (2005)

  28. M Areej, Shawahni, M S Abu-Jafar, R T Jaradat, Tarik Ouahrani, Rabah Khenata, A A Mousa and K F Ilaiwi Materials 11 2057 (2018)

    Google Scholar 

  29. C J Howard and H T Stokes Acta Crystallogr. Sect. A: Found. Crystallogr. 61 93 (2005)

    Article  ADS  Google Scholar 

  30. S Kumar, S Ghosh, M S Lotayif and B Samet Alex. Eng. J. 59 1435 (2020)

    Article  Google Scholar 

  31. A E M Matouk Advanced Applications of Fractional Differential Operators to Science and Technology IGI Global 115 (2020)

  32. S Kumar, A Kumar, Z Odibat, M Aldhaifallah and K S Nisar Aims Math. 5 3035 (2020)

    Article  Google Scholar 

  33. S S A Gillani, R Ahmad, M Rizwan, M Rafique, G Ullah, C B Cao and H B Jin Optik 191 132 (2019)

    ADS  Google Scholar 

  34. W D Zhong, D Vanderbilt and K Rabe Phys. Rev. B 52 6301 (1995)

    Article  ADS  Google Scholar 

  35. J P Perdew, J A Chevary, S H Vosko, K A Jackson, M R Pederson, D J Singh and C Fiolhais Phys. Rev. B 46 6671 (1992)

    Article  ADS  Google Scholar 

  36. B J Kennedy, C J Howard and B C Chakoumakos Phys. Rev. B 59 4023 (1999)

    Article  ADS  Google Scholar 

  37. T Matsuda, S Yamanaka, K Kurosaki and S I Kobayashi J. Alloys Compounds 351 43 (2003)

    Article  Google Scholar 

  38. D de Ligny and P Richet Phys. Rev. B 53 3013 (1996)

    Article  ADS  Google Scholar 

  39. L Carlsson Acta Crystallogr. 23 901 (1967)

  40. L Carlsson J. Mater. Sci. 5 335 (1970)

  41. T A T Sulong, R A M Osman and M S Idris AIP Conference Proceedings 1756 070003 (2016)

    Article  Google Scholar 

  42. J Zhao, X Wu, L Li and X Li Solid-State Electron. 48 2287 (2004)

    Article  ADS  Google Scholar 

  43. J Xie, H Hao, H Liu, Z Yao, Z Song, L Zhang, Q Xu, J Dai and M Cao Ceram. Int. 42 12796 (2016)

    Article  Google Scholar 

  44. P K Petrov, E F Carlsson, P Larsson, M Friesel and G I Zdravko J. Appl. Phys. 84 3134 (1998)

    Article  ADS  Google Scholar 

  45. G Nazir, Saad Tariq, A Afaq, Q Mahmood, S Saad and A Mahmood Acta Physica Polonica A 133 105 (2018)

    ADS  Google Scholar 

  46. S Tariq, A A Mubarak, F Hamioud, M Musa Saad, S Zahra, B Kanwal and Q Afzal J. Alloys Compounds 831 154600 (2020)

    Article  Google Scholar 

  47. I Roberts Eglitis Appl. Surface Sci. B 358 556 (2015)

  48. Z Ali, I Khan, I Ahmad, M S Khan and S J Asadabadi Mater. Chem. Phys. 162 308 (2015)

    Article  Google Scholar 

  49. R S Roth J. Res. Natl. Bureau Stand. 58 75 (1957)

  50. H E Swanson US Department of Commerce, National Bureau of Standards 1 (1953)

  51. R Vali Solid State Commun. 145 497 (2008)

  52. K Galicka-Fau, C Legros, M Andrieux, M Herbst-Ghysel, I Gallet, M Condat, O Durand and B Servet Thin Solid Films 516 7967 (2008)

    Article  ADS  Google Scholar 

  53. A Bakhshayeshi, M M Sarmazdeh, R T Mendi and A Boochani J. Electron. Mater. 46 2196 (2017)

    Article  ADS  Google Scholar 

  54. S Rezaee, A Boochani, M Majidiyan, A Ghaderi, S Solaymani and M Naseri Rare Met. 33 615 (2014)

    Article  Google Scholar 

  55. H Lashgari, M R Abolhassani, A Boochani, E Sartipi, R Taghavi-Mendi and A Ghaderi Indian J. Phys. 90 909 (2016)

    ADS  Google Scholar 

  56. M Afsari, A Boochani, M Hantezadeh and S M Elahi Solid State Commun. 259 10 (2017)

    Article  ADS  Google Scholar 

  57. K Shalmashi, H Khosravi, A Boochani and YT Azar J. Phys. Chem. Solids 138 109243 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akgül.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizwan, M., Farman, M., Akgül, A. et al. Variation in electronic and optical responses due to phase transformation of SrZrO3 from cubic to orthorhombic under high pressure: a computational insight. Indian J Phys 96, 1–9 (2022). https://doi.org/10.1007/s12648-021-02031-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02031-2

Keywords

Navigation