Skip to main content
Log in

Ab initio and Monte Carlo studies of physical properties of semiconductor radiation detectors

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The structural and electronic properties of Cd1−xZnxTe and Cd1–xMnxTe compound semiconductors are investigated by using the first-principles pseudopotential plane-wave method based on the density functional theory (DFT). The generalized gradient approximation (GGA) and the local density approximation (LDA) are used. The calculated lattice parameters, the bulk modulus and the electronic band structures of different alloys are found to be in good agreement with the literature data. Absolute, photopeak and intrinsic detection efficiencies, in the 511–1332.5 keV gamma-ray energy range, are investigated using a stochastic approach, which is the Monte Carlo method as implemented in the Geant4 code. The calculated parameters are analyzed in the light of the available data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A Owens J. Synchrotron. Rad. 13 143 (2006)

    Article  Google Scholar 

  2. J J Prias-Barragan, L Tirado-Mejia, H Ariza-Calderon, L Banos, J J Perez-Bueno and M E Rodriguez J. Cryst. Growth 286 279 (2006)

    Article  ADS  Google Scholar 

  3. S D Sorodo, L Abbene, E Caroli, A M Mancini, A Zappettini et al. Sensors (Basel) 9 3491 (2009)

    Article  ADS  Google Scholar 

  4. Y Cui, A Bolotnikov, A Hossain, G S Camarda et al. Proc. SPIE 7079 70790N (2008)

    Article  Google Scholar 

  5. K H Kim, G S Camarda, A E Bolotnikov, R B James, J Hong and S Kim J. Appl. Phys. 105 093705 (2009)

    Article  ADS  Google Scholar 

  6. W Kohn and L J Sham Phys. Rev. 140 A1133 (1965)

    Article  ADS  Google Scholar 

  7. S Saib, S Benyettou and N Bouarissa Physica E Low-Dimens. Syst. Nanostruct. 68 184 (2015)

    Article  ADS  Google Scholar 

  8. N Korozlu, K Colakoglu and E Deligoz J. Phys. Condens. Matter 21 175406 (2009)

    Article  ADS  Google Scholar 

  9. R Hussain, S M Mirza and N M Mirza Nucl. Technol. Radiat. Protect. 29 242 (2014)

    Article  Google Scholar 

  10. K J Furdyna J. Appl. Phys. 64 29 (1988)

    Article  ADS  Google Scholar 

  11. U P Verma, S Sharma, N Devi, P S Bisht and P Rajaram J. Magnet. Magnet. Mater. 323 394 (2011)

    Article  ADS  Google Scholar 

  12. S Sharma, N Devi, U P Verma and P Rajarm Physica B Condens. Matter 406 4547 (2011)

    Article  ADS  Google Scholar 

  13. S V Syrotyuk, O P MalykSaim J. Nano Electron. Phys. 11 01009 (2019)

    Google Scholar 

  14. The ABINIT computer code is a common project of the University Catholique of Louvain, Corning Incorporated and other contributors. Available online at URL: http://www.abinit.org

  15. J P Perdew, K Burke and M Ernzerh Phys. Rev. Lett. 77 3865 (1996)

    Article  ADS  Google Scholar 

  16. J P Perdew and Y Wang Phys. Rev. B 45 13244 (1992)

    Article  ADS  Google Scholar 

  17. N Troullier and J L Martins Phys. Rev. B 43 1993 (1991)

    Article  ADS  Google Scholar 

  18. M Fuchs and M Scheffler Comput. Phys. Commun 119 67 (1999)

    Article  ADS  Google Scholar 

  19. H J Monkhorst and J D Pack Phys. Rev. B 13 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  20. L Nordheim Ann. Phys. (Leipz.) 401 607 (1931)

    Article  ADS  Google Scholar 

  21. M E Medhat and Y Wang (2013) Ann. Nucl. Energy 62 316

    Article  Google Scholar 

  22. F Birch (1986) J. Geophys. Res 91 4949

    Article  ADS  Google Scholar 

  23. E Deligoz, K Colakoglu and Y Ciftci (2006) Physica B 373 124

    Article  ADS  Google Scholar 

  24. Z Nourbakhsh J. Alloys Compd. 505 698 (2010)

    Article  Google Scholar 

  25. H Duan, X Chen, Y Huang, X Zhou, L Sun and W Lu Phys. Rev B 76 035209 (2007)

    Article  ADS  Google Scholar 

  26. S Zerroug, F A Sahraoui and N Bouarissa Eur. Phys. J. B 57 9 (2007)

    Article  ADS  Google Scholar 

  27. A Balzarotti, M Czyzyk, A Kisiel, N Motta, M Podgomy and M Zimnal-Stranawska Phys. Rev. B 30 2295 (1984)

    Article  ADS  Google Scholar 

  28. W Bu-Sheng and L Yong Acta Phys. Sin. 65 066101-1 (2016)

    Google Scholar 

  29. O Madelung, M Schlz, H Weiss and Landolt-borstein, Numerical Data and Functional Relationships in Science and Technology (Berlin: Springer) vol. 17 (1982)

    Google Scholar 

  30. S H Wei and A Zunger Phys. Rev. B 35 2340 (1987)

    Article  ADS  Google Scholar 

  31. T M Giebultowicz, P K Ãlosowski et al. Phys. Rev. B 48 12817 (1993)

    Article  ADS  Google Scholar 

  32. S Ouendadji, S Ghemid, H Meradji and H Meradji Comput. Mater. Sci. 48 206 (2010)

    Article  Google Scholar 

  33. T Jiajin, Y Li, and G Ji Comput. Mater. Sci. 58 243 (2012)

    Article  Google Scholar 

  34. A E Merad, M B Kanoun and S Goumri-Said J. Magnet. Magnet. Mater. 302 536 (2006)

    Article  ADS  Google Scholar 

  35. A Saim, A. Tebboune, H Berkok, N Belameiri and A H Belbachir J. Alloys Compd. 602 261 (2014)

    Article  Google Scholar 

  36. F El Haj Hassan, S J Hashemifar and H Akbarzadeh Phys. Rev. B 73 195202 (2006)

    Article  ADS  Google Scholar 

  37. S D Borges and J P Rino Phys. Rev. B 72 014107 (2005)

    Article  ADS  Google Scholar 

  38. S A Touat, F Litimein, A Tadjer and B Bouhafs Physica B Condens. Matter. 405 625 (2010)

    Article  ADS  Google Scholar 

  39. H C Poon, Z C Feng, Y P Feng and M F Li J. Phys. Condens. Matter 7 2783 (1995)

    Article  ADS  Google Scholar 

  40. O Maksimov and M C Tamargo Appl. Phys. Lett. 79 782 (2001)

    Article  ADS  Google Scholar 

  41. R J Nelmes, M I McMahon, N G Wright and D R Allan Phys. Rev. B 48 1314 (1993)

    Article  ADS  Google Scholar 

  42. N Bourissa Physica B 399 126 (2007)

    Article  ADS  Google Scholar 

  43. O Zakharov, A Rubio, X Blase, M L Cohen and S G Louie Phys. Rev. B 50 10780 (1994)

    Article  ADS  Google Scholar 

  44. N D Savchenko, T N Shchurova, K O Popovych, I D Rubish and G Leising Semicond. Phys. Quantum Electron. Optoelectron. 7 133 (2004)

    Article  Google Scholar 

  45. N Belameiri, A Tebboune et al. Can. J. Phys. 94 1378 (2016)

    Article  ADS  Google Scholar 

  46. G A Kumar, I Mazumdar and D A Gothe Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 610 522 (2009)

    Article  ADS  Google Scholar 

  47. S Hurtado, M Garcıa-León and R Garcıa-Tenorio Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 518 774 (2004)

    Article  ADS  Google Scholar 

  48. R Rieppo Int. J. Appl. Radiat. Isot. 36 857 (1985)

    Article  Google Scholar 

  49. A Basit, M T Siddique, S M Mirza, S U Rehman and M Y Hamza J. Radiol. Prot. 36 857 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Tedjini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tedjini, M.H., Oukebdane, A., Belkaid, M.N. et al. Ab initio and Monte Carlo studies of physical properties of semiconductor radiation detectors. Indian J Phys 95, 2627–2638 (2021). https://doi.org/10.1007/s12648-020-01916-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01916-y

Keywords

Navigation