Skip to main content
Log in

Magnetoviscous effects on revolving ferrofluid due to an immersed rotating rod in the presence of gravitational force

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the present investigation, the effects of the rotating magnetic field, magnetization body force, and magnetic torque on revolving ferrofluid due to an immersed rotating rod are considered. The impact of the rotation of the rod and gravitational force are taken into deliberation in the present physical model. A similarity transformation is used to transform the governing partial differential equations into a set of nonlinear-coupled differential equations in dimensionless form. The numerical solution of the transformed nonlinear-coupled differential equations is obtained using COMSOL Multiphysics software in a framework of the finite element method. Results for radial, tangential, and axial velocity distributions are presented for different values of ferromagnetic interaction number, effective magnetization number, the volume concentration of particles, gravitational number, and speed of the rotation of the immersed rod. Coefficients of skin friction on the surface of the disk and wall of the rod are also computed for different values of considered physical parameters. Present results show that magnetic torque creates an additional resistance on the velocity distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\( a \) :

Ratio parameter

E :

Dimensionless component of radial velocity

F :

Dimensionless component of tangential velocity

G :

Dimensionless component of axial velocity

\( \varvec{g} \) :

Acceleration due to gravity \( \left( {{\text{m}}\;{\text{s}}^{ - 2} } \right) \)

\( \xi \) :

Effective magnetization parameter

\( G_{0} \) :

Magnetic field gradient \( \left( {{\text{A}}\;{\text{m}}^{ - 2} } \right) \)

\( g_{1} \) :

Gravitational number

\( h \) :

Height of the immersed rod (m)

\( \varvec{H} \) :

Magnetic field intensity \( \left( {{\text{A m}}^{ - 1} } \right) \)

\( I \) :

Sum of the particles moment of inertia \( \left( {{\text{kg m}}^{2} } \right) \)

\( l \) :

Characteristic length (m)

\( \varvec{M} \) :

Magnetization \( \left( {{\text{A m}}^{ - 1} } \right) \)

\( m \) :

Magnetic moment \( \left( {{\text{A m}}^{2} } \right) \)

\( M_{1} \) :

Ferromagnetic interaction number

\( p \) :

Fluid pressure \( \left( {{\text{kg m}}^{ - 1} {\text{s}}^{ - 2} } \right) \)

\( r \) :

Radial direction (m)

\( r_{0} \) :

The radius of the immersed rod (m)

\( t \) :

Time (s)

\( \varvec{v} \) :

Velocity of ferrofluid \( \left( {{\text{m s}}^{ - 1} } \right) \)

\( v_{r} \) :

Radial velocity (m/s)

\( v_{\theta } \) :

Tangential velocity (m/s)

\( v_{z} \) :

Axial velocity (m/s)

\( z \) :

Axial direction (m)

\( \rho \) :

Fluid density \( \left( {{\text{kg m}}^{ - 3} } \right) \)

\( \mu_{0} \) :

The magnetic permeability of free space \( \left( {{\text{H m}}^{ - 1} } \right) \)

\( \mu \) :

Reference viscosity of the fluid \( \left( {{\text{kg m}}^{ - 1} {\text{s}}^{ - 1} } \right) \)

\( \nabla \) :

Gradient operator \( \left( {{\text{m}}^{ - 1} } \right) \)

\( \tau_{\text{s}} \) :

Rotational relaxation time \( \left( {{\text{s}}^{ - 1} } \right) \)

\( \omega_{\text{p}} \) :

Angular velocity of particles \( \left( {{\text{rad s}}^{ - 1} } \right) \)

\( \varOmega \) :

Vorticity \( \left( {{\text{rad s}}^{ - 1} } \right) \)

\( \omega_{0} \) :

Angular velocity of the immersed rod \( \left( {{\text{rad s}}^{ - 1} } \right) \)

\( \omega \) :

Angular velocity of volume fluid \( \left( {{\text{rad s}}^{ - 1} } \right) \)

\( \theta \) :

Tangential direction \( \left( {\text{rad}} \right) \)

\( \varphi \) :

Volume concentration

\( \nu \) :

Kinematic viscosity without magnetic field \( \left( {{\text{m}}^{2} /{\text{s}}} \right) \)

\( \alpha \) :

Dimensionless distance parameter

References

  1. W G Cochran Math. Proc. Camb. Philos. Soc. 30 365 (1934)

    ADS  Google Scholar 

  2. E R Benton J. Fluid Mech. 24 781 (1966).

    ADS  Google Scholar 

  3. H A Attia and A L Aboul-Hassan Appl. Math. Model. 25 1089 (2001)

    Google Scholar 

  4. M M Rashidi, T Hayat, E Erfani, S A Mohimanian Pour and A A Hendi Commun. Nonlinear Sci. Numer. Simul. 16 4303 (2011)

    ADS  MathSciNet  Google Scholar 

  5. T Hayat, S Qayyum, M Imtiaz, F Alzahrani and A Alsaedi J. Magn. Magn. Mater. 413 39 (2016)

    ADS  Google Scholar 

  6. T Hayat, M Rashid, M Imtiaz and A Alsaedi AIP Adv. 5 067169 (2015)

    ADS  Google Scholar 

  7. A Mushtaq, M Mustafa, T Hayat and A Alsaedi Adv. Powder Technol. 27 2223 (2016)

    Google Scholar 

  8. T Hayat, M Rashid, M Imtiaz and A Alsaedi Int. J. Heat Mass Transf. 113 96 (2017)

    Google Scholar 

  9. M Turkyilmazoglu Comput. Fluids 94 139 (2014)

    MathSciNet  Google Scholar 

  10. P Ram and A Bhandari Int. J. Appl. Electromagn. Mech. 41 467 (2013)

    Google Scholar 

  11. A Bhandari and V Kumar Int. J. Appl. Mech. Eng. 21 273 (2016)

    Google Scholar 

  12. A Bhandari and V Kumar Eur. Phys. J. Plus 130 1 (2015)

    Google Scholar 

  13. S Odenbach and S Thurm Magnetoviscous Effects in Ferrofluids p 185 (2002).

  14. P Ram and A Bhandari Results Phys. 3 55 (2013)

    ADS  Google Scholar 

  15. M Turkyilmazoglu Int. J. Therm. Sci. 51 195 (2012)

    Google Scholar 

  16. T Hayat, M I Khan, M Farooq, A Alsaedi, M Waqas and T Yasmeen Int. J. Heat Mass Transf. 99 702 (2016)

    Google Scholar 

  17. T Hayat, M I Khan, M Waqas, A Alsaedi and M Farooq Comput. Methods Appl. Mech. Eng. 315 1011 (2017)

    ADS  Google Scholar 

  18. T Hayat, M I Khan, S Qayyum and A Alsaedi Colloids Surf. A Physicochem. Eng. Asp. 539 335 (2018)

    Google Scholar 

  19. T Hayat, M I Khan, M Farooq, T Yasmeen, and A Alsaedi J. Mol. Liq. 220 49 (2016)

    Google Scholar 

  20. M I Khan, M Waqas, T Hayat, and A Alsaedi J. Colloid Interface Sci. 498 85 (2017)

    ADS  Google Scholar 

  21. M Waleed Ahmed Khan, M Ijaz Khan, T Hayat and A Alsaedi Phys. B Condens. Matter 534 113 (2018)

    ADS  Google Scholar 

  22. M I Khan, S Qayyum, T Hayat, M I Khan, A Alsaedi and T A Khan Phys. Lett. Sect. A Gen. At. Solid State Phys. 382 2017 (2018)

    Google Scholar 

  23. T Hayat, S A Khan, M Ijaz Khan and A Alsaedi Comput. Methods Progr. Biomed. 177 57 (2019)

    Google Scholar 

  24. M Ijaz Khan, A Kumar, T Hayat, M Waqas and R Singh J. Mol. Liq. 278 677 (2019)

    Google Scholar 

  25. M Rashid, M I Khan, T Hayat, M I Khan and A Alsaedi J. Mol. Liq. 276 441 (2019)

    Google Scholar 

  26. T Hayat, R Riaz, A Aziz and A Alsaedi Phys. Scr. 94 125703 (2019)

    ADS  Google Scholar 

  27. T Hayat, M I Khan, T A Khan, M I Khan, S Ahmad and A Alsaedi J. Mol. Liq. 265 629 (2018)

    Google Scholar 

  28. T Hayat, M I Khan, A Alsaedi and M I Khan Int. Commun. Heat Mass Transf. 89 190 (2017)

    Google Scholar 

  29. S Qayyum, M Ijaz Khan, T Hayat, A Alsaedi and M Tamoor Int. J. Heat Mass Transf. 127 933 (2018)

    Google Scholar 

  30. S Qayyum, T Hayat, M I Khan, M I Khan and A Alsaedi J. Mol. Liq. 262 261 (2018)

    Google Scholar 

  31. T Hayat, S Qayyum, M I Khan and A Alsaedi Int. J. Hydrogen Energy 42 29107 (2017)

    Google Scholar 

  32. T Hayat, A Aziz, T Muhammad and A Alsaedi Results Phys. 9 290 (2018)

    ADS  Google Scholar 

  33. T Hayat, A Aziz, T Muhammad and A Alsaedi Int. J. Heat Mass Transf. 100 566 (2016)

    Google Scholar 

  34. T Hayat, A Aziz, T Muhammad and A Alsaedi J. Braz. Soc. Mech. Sci. Eng. 41 1 (2019)

    Google Scholar 

  35. T Hayat, A Aziz, T Muhammad and A Alsaedi J. Therm. Anal. Calorim. 139 183 (2020)

    Google Scholar 

  36. T Hayat, A Aziz, T Muhammad and A Alsaedi Int. J. Numer. Methods Heat Fluid Flow 28 2531 (2018)

    Google Scholar 

  37. M Mustafa, J A Khan, T Hayat and A Alsaedi Int. J. Nonlinear Sci. Numer. Simul. 19 1 (2018)

    MathSciNet  Google Scholar 

  38. K Ur Rehman, M Y Malik, W A Khan, I Khan and S O Alharbi Symmetry (Basel). 11 699 (2019)

    Google Scholar 

  39. A Aziz, A Alsaedi, T Muhammad and T Hayat Results Phys. 8 785 (2018)

    ADS  Google Scholar 

  40. D H Schultz and V L Shah Comput. Fluids 7 137 (1979)

    ADS  Google Scholar 

  41. R S Agarwal and C Dhanapal Int. J. Eng. Sci. 25 1403 (1987)

    Google Scholar 

  42. S Odenbach FerrofluidsMagnetically Controlled Suspensions (Amsterdam: Elsevier) p 171 (2003)

  43. A Y Zubarev and D N Chirikov J. Exp. Theor. Phys. 110 995 (2010)

    ADS  Google Scholar 

  44. S Odenbach and H Störk J. Magn. Magn. Mater. 183 188 (1998)

    ADS  Google Scholar 

  45. M I Shliomis and K I Morozov Phys. Fluids 6 2855 (1994)

    ADS  Google Scholar 

  46. J C Bacri, R Perzynski, M I Shliomis and G I Burde Phys. Rev. Lett. 75 2128 (1995)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Bhandari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandari, A. Magnetoviscous effects on revolving ferrofluid due to an immersed rotating rod in the presence of gravitational force. Indian J Phys 95, 2759–2767 (2021). https://doi.org/10.1007/s12648-020-01915-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01915-z

Keywords

Navigation