Skip to main content
Log in

Molecular dynamics simulations of helium migration, diffusion behavior of helium bubbles, and melting point of single crystal in bulk γ-Fe

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The behavior of He atoms in γ-Fe single crystal is studied using the molecular dynamics simulation (MD) methods. Simulations show that the melting point of bulk γ-Fe computed by single-phase and dual-phase methods is 1935 and 1727 ± 1 K, respectively. There is evidence that the diffusion of He clusters is closely related to the cluster size and temperature and at high temperatures (above 1500 K), large clusters will break up into small clusters and quickly separate from the original clusters. The study on the diffusion behaviors of He clusters helps us to better understand the formation of He bubbles and the fusion of two He bubbles. It was confirmed that the He atom can migrate to the subsurface, but it is difficult to escape from the surface and diffuse to the vacuum slab. This work provides useful information for further theoretical and experimental research on the evolution behaviors of He in materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M R Gilbert, S L Dudarev, S Zheng, L W Packer and J C Sublet Nucl. Fusion 52 083019 (2012)

    Article  ADS  Google Scholar 

  2. M R Gilbert, S L Dudarev, D N Manh, S Zheng, L W Packer and J C Sublet J. Nucl. Mater. 422 S755 (2013)

    Article  Google Scholar 

  3. A Kimura et al. J. Nucl. Mater. 307–311 521 (2002)

    Article  ADS  Google Scholar 

  4. D Kramer, H R Brager, C G Rhodes and A G Pard J. Nucl. Mater. 25 121 (1968)

    Article  ADS  Google Scholar 

  5. W Kesternich and J Rothaut J. Nucl. Mater. 104 845 (1981)

    Article  ADS  Google Scholar 

  6. W Kesternich, J. Nucl. Mater. 127 153 (1985)

    Article  ADS  Google Scholar 

  7. A Caro et al. J. Nucl. Mater. 418 261 (2011)

    Article  ADS  Google Scholar 

  8. I Villacampa, J C Chen, P Spätig, H P Seifert and F Duval J. Nucl. Mater. 500 389 (2018)

    Article  ADS  Google Scholar 

  9. Y H Gong et al. Nucl. Fusion 58 046011 (2018)

    Article  ADS  Google Scholar 

  10. E Wakai et al. Nucl. Mater. Energy 17 34 (2018)

    Article  Google Scholar 

  11. L D Xia et al. Nucl. Eng. Technol. 50 132 (2018)

    Article  Google Scholar 

  12. X Y Sun, F D Chen, H Huang, J W Lin and X B Tang Appl. Surf. Sci. 467–468 1134 (2019)

    Article  ADS  Google Scholar 

  13. D Terentyev and X He Comp. Mater. Sci. 49 858 (2010)

    Article  Google Scholar 

  14. J Wang, L M Yu, Y Huang, H J Li and Y C Liu Comp. Mater. Sci. 160 105 (2019)

    Article  Google Scholar 

  15. J Wang, Z Q Ma, C X Liu, Y Huang, H J Li and Y C Liu J. Mater. Sci. 54 1785 (2019)

    Article  ADS  Google Scholar 

  16. L Li et al. J. Nucl. Mater. 526 151748 (2019)

    Article  Google Scholar 

  17. L Wan,Q Q Wang, X Q Ye, X Z Cao, S X Jin and T Gao RSC Adv. 10 3277 (2020)

    Article  ADS  Google Scholar 

  18. M Schoen Comput. Phys. Commun. 52 175 (1989)

    Article  ADS  Google Scholar 

  19. G S Grest and B Dünweg Comput. Phys. Commun. 55 269 (1989)

    Article  ADS  Google Scholar 

  20. D C Rapaport Phys. Rev. Lett. 60 2480 (1988)

    Article  ADS  Google Scholar 

  21. S Plimpton J. Comput. Phys. 117 1 (1995)

    Article  ADS  Google Scholar 

  22. D C Rapaport Comput. Phys. Rep. 9 1 (1988)

    Article  ADS  Google Scholar 

  23. F Gao, H Q Deng, H L Heinisch and R J Kurtz J. Nucl. Mater. 418 115 (2011)

    Article  ADS  Google Scholar 

  24. G J Ackland, M I Mendelev, D J Srolovitz, S Han and A V Barashev J. Phys-Condens Mat. 16 S2629 (2004)

    Article  Google Scholar 

  25. R A Aziz and A R Janzen Phys. Rev. Lett. 74 1586 (1995)

    Article  ADS  Google Scholar 

  26. J Yu, X Lin, J J Wang, J Chen and W D Huang Appl. Surf. Sci. 255 9032 (2009)

    Article  ADS  Google Scholar 

  27. M Acet, H Zahres and E F Wassermann Phys. Rev. B 49 6012 (1994)

    Article  ADS  Google Scholar 

  28. P A Korzhavyi and I A Abrikosov Phys. Rev. B 59 11693 (1999)

    Article  ADS  Google Scholar 

  29. G D Price, S C Parker and M Leslie Phys. Chem. Miner. 15 181 (1987)

    Article  ADS  Google Scholar 

  30. T Arima, K Idemitsu, Y Inagaki, Y Tsujita, M Kinoshita and E Yakub J. Nucl. Mater. 389 149 (2009)

    Article  ADS  Google Scholar 

  31. X C Li et al. J. Nucl. Mater. 455 544 (2014)

    Article  ADS  Google Scholar 

  32. G Henkelman, B P Uberuaga and H Jónsson J. Chem. Phys. 113 9901 (2000)

    Article  ADS  Google Scholar 

  33. G Henkelman and H Jónsson J. Chem. Phys. 113 9978 (2000)

    Article  ADS  Google Scholar 

  34. A Nakano Comput. Phys. Commun. 178 280 (2008)

    Article  ADS  Google Scholar 

  35. E Maras, O Trushin, A Stukowski, T Ala-Nissila and H Jónsson Comput. Phys. Commun. 205 13 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Dr. Shenggui Ma of the National Engineering Research Center for Flue Gas Desulfurization for his suggestions and comments. We thank Ruijie Zhang for his discussions. This work was supported by a fund from the Science and Technology on Surface Physics and Chemistry Laboratory (No. 02020417).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, L., Ma, S.G., Zhang, R.J. et al. Molecular dynamics simulations of helium migration, diffusion behavior of helium bubbles, and melting point of single crystal in bulk γ-Fe. Indian J Phys 95, 2375–2385 (2021). https://doi.org/10.1007/s12648-020-01914-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01914-0

Keywords

Navigation