Skip to main content
Log in

Numerical simulation of the electron traps effect created by neutron irradiation on \(p^+-n-n^+\) GaAs solar cell performance

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Numerical simulation is used in this work to model the effect of 1 MeV neutron irradiation on the performance degradation of a \(p^+-n-n^+\) GaAs solar cell. The effect is predicted by the calculation of the current–voltage characteristics under AM0 illumination for a constant dose of neutron irradiation. The solar cell output parameters (the short-circuit current density \(J_{{\rm sc}}\), the open-circuit voltage \(V_{{\rm oc}}\), the fill factor FF and the conversion efficiency \(\eta\)) are extracted from these characteristics. The neutron irradiation induced five electron traps En1, En2, En3, En4 and En5 in the energy gap either as recombination centers or traps. The degradation by the induced traps is widely attributed to the first type of defects. Simulating the effect of each trap level separately helps to find out which of them is responsible for the degradation of a particular output parameter. The simulation results have shown that the \(p^+-n-n^+\) GaAs solar cell degradation is very apparent at \(10^{14}\) cm\(^{-2}\) neutron irradiation fluence. The deepest electron trap En5, with largest capture cross section, is responsible for the degradation of \(J_{{\rm sc}}\) and \(\eta\). The other electron traps En1, En2, En3 and En4 have a no significant effect on the solar cell output parameters, particularly on the open-circuit voltage \(V_{{\rm oc}}\). Finally, the solar cell resistivity to the neutron irradiation can be improved by decreasing the thickness of \(p^+ {\rm GaAs}\) emitter layer from 0.44 to 0.1 \(\upmu\)m with keeping a gradual \({\rm Al}_x\) \({\rm Ga}_{1-x}{\rm As}\) window thickness of 0.09 \(\upmu\)m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M Yamaguchi Solar Energy Mater.Solar Cells 68 31 (2001)

  2. J C Bourgoin and N de Angelis Solar Energy Mater. Solar Cells 66 467 (2001)

  3. M Radu, V Ghenescu, I Stan, L Ion, C Besleaga, A Nicolaev and M Ghenescu Chalcogenide Lett. 8 477 (2011)

    Google Scholar 

  4. S Antohe, V Ghenescu, S Iftimie, A Radu, O Toma and L Ion Digest J. Nanomater. Biostruct. (DJNB) 7 (2012)

  5. O Toma, L Ion, M Girtan and S Antohe Solar Energy 108 51 (2014)

    Article  ADS  Google Scholar 

  6. F Lang, N H Nickel, J Bundesmann, S Seidel, A Denker, S Albrecht and H C Neitzert Adv. Mater. 28 8726 (2016)

    Article  Google Scholar 

  7. Y Miyazawa, M Ikegami, T Miyasaka, T Ohshima, M Imaizumi and K Hirose IEEE 42nd Photovoltaic Specialist Conference (PVSC). IEEE 1 (2015)

  8. J S Huang, M D Kelzenberg, P Espinet-González, C Mann, D Walker, A Naqavi and H A Atwater IEEE 44th Photovoltaic Specialist Conference (PVSC). IEEE 1248 (2017)

  9. N Takata, H Kurakata, S Matsuda, T Okuno, S Yoshida, H Matsumoto, M Goto, M Ohkubo and M Ohmura IEEE Conference on Photovoltaic Specialists 2 1219 (1990)

    Article  Google Scholar 

  10. N Asim, K Sopian, S Ahmadi, K Saeedfar, M Alghoul, O Saadatian and S H Zaidi Renew.Sustain. Energy Rev. 16 5834 (2012)

    Article  Google Scholar 

  11. L M Fraas and L D Partain Solar Cells Their Appl. 236 (2010)

  12. J Lilensten Le système solaire revisité Ed. Eyrolles (2006)

  13. R Y Loo, G S Kamath, S S Li IEEE Trans. Electron Dev. 37 485 (1990)

    Article  ADS  Google Scholar 

  14. J H Warner, S R Messenger, R J Walters, G P Summers, J R Lorentzen, D M Wilt and M A Smith et al. IEEE Trans. Nucl. Sci. 53 1988 (2006)

    Article  ADS  Google Scholar 

  15. V Ruxandra and S Antohe J. Appl. Phys. 84 727 (1998)

    Article  ADS  Google Scholar 

  16. S Antohe, L Ion and V Ruxandra J. Appl. Phys. 90 5928 (2001)

    Article  ADS  Google Scholar 

  17. S Antohe, L Ion and V A Antohe J. Optoelectron. Adv. Mater. 5 801 (2003)

    Google Scholar 

  18. S Antohe, L Ion, V A Antohe, M Ghenescu and H Alexandru J. Optoelectron. Adv. Mater. 9 1382 (2007)

    Google Scholar 

  19. O Toma, L Ion, S Iftimie, A Radu and A Antohe Mater. Des. 100 198 (2016)

    Article  Google Scholar 

  20. O Toma, L Ion, S Iftimie, V A Antohe, A Radu, A M Raduta and S Antohe Appl.Surf. Sci. 478 831(2019)

    Article  ADS  Google Scholar 

  21. F D Auret, A Goodman, S G Myburg, O W Barnard and T L D Jones J. Appl. Phys. 4339 4339 (1993)

    Article  ADS  Google Scholar 

  22. C Axness, B Kerr and E Keiter IEEE Trans. Nucl.Sci. 57 3314 (2011)

    Google Scholar 

  23. J C Bourgoin and M Zazoui Semiconduct. Sci. Technol. 17 453 (2002)

    Article  ADS  Google Scholar 

  24. M Hadrami, L Roubi, M Zazoui and J C Bourgoin Solar Energy Mater. Solar Cells 90 1486 (2006)

    Article  Google Scholar 

  25. H Mazouz, P O Logerais, A Belghachi, O Riou, F Delaleux and J F Durastanti Int. J. Hydrog. Energy 40 13857 (2015)

  26. AF Meftah, N Sengouga, AM Meftah and S Khelifi Renew. Energy 34 2426 (2009)

    Article  Google Scholar 

  27. AF Meftah, N Sengouga, A Belghachi and AM Meftah J. Phys. Condens. Matter 21 215802 (2009)

  28. S Dabbabi, T B Nasr and N T Kamoun JOM 71 602 (2019)

    Article  Google Scholar 

  29. W Laiadi, AF Meftah, N Sengouga, AM Meftah Superlattices Microstruct. 58 44 (2013)

    Article  ADS  Google Scholar 

  30. A Aierken, L Fang, M Heini, Q M Zhang, Z H Li, X F Zhao and H Gao Solar Energy Mater. Solar Cells 185 36 (2018)

    Article  Google Scholar 

  31. D Wang, B Chen, Z Wei, X Fang, J Tang, D Fang, A Aierken, X Wang, H Maliya and Q Guo J. Phys. Chem. Solids 132 26 (2019)

    Article  ADS  Google Scholar 

  32. G Hongliang, S Linfeng, S Qiang, Z Qiming, W Yiyong, X Jingdong, G Bin and Z Yanqing Solar Energy Mater. Solar Cells 191 399 (2019)

    Article  Google Scholar 

  33. F Lang, M Jost, J Bundesmann, A Denker, S Albrecht, G Landi and N H Nickel Energy Environ. Sci. 12 1634 (2019)

    Article  Google Scholar 

  34. F D Auret, A Wilson, S Goodman, G Myburg and W Meyer Nuclear Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 90 387 (1994)

    Article  Google Scholar 

  35. J Becker, Y Kuo and Y Zhang IEEE 40th Photovoltaic Specialist Conference (PVSC) 1839 (2014)

  36. M Kurata Numerical analysis for semiconductor devices Lexington Books (1982)

  37. W Shockley and T J W Read Phys. Rev. 87 835 (1952)

    Article  ADS  Google Scholar 

  38. B Li, X Xiang, Z You, Y Xu, X Fei and X Liao Solar Energy Mater. Solar Cells 44 63 (1996)

    Article  Google Scholar 

  39. AF Meftah, AM Meftah, N Sengouga and S Khelifi Energy Convers. Manag. 51 1676 (2010)

    Article  Google Scholar 

  40. D Wurfel Peter Physics of solar cells : from principles to new concepts Weinheim : Wiley-VCH (2005)

  41. M Zeman, J Van Den Heuvel, M Kroon and J Willemen Amorphous semiconductor analysis (asa) user’s manual Delft University of Technology p. 2 (1999)

  42. S M Khanna, C Rejeb, A Jorio, M Parenteau and C Carlone and J W Gerdes IEEE Trans. Nucl. Sci. 40 1350 (1993)

    Article  ADS  Google Scholar 

  43. G M Martin, A Mitonneau and A Mircea Electron. Lett. 13 191 (1977)

    Article  ADS  Google Scholar 

  44. S Tsaur, A Milnes, R Sahai and D Feucht Proceedings of the fourth international symposium on GaAs and related compounds conference Series 17 156 (1972)

    Google Scholar 

  45. M Mbarki, G Sun and J C Bourgoin Semiconduct. Sci. Technol. 19 1081 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Widad Laiadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laiadi, W., Meftah, A., Meftah, A. et al. Numerical simulation of the electron traps effect created by neutron irradiation on \(p^+-n-n^+\) GaAs solar cell performance. Indian J Phys 95, 1871–1878 (2021). https://doi.org/10.1007/s12648-020-01864-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01864-7

Keywords

Navigation