Skip to main content
Log in

Determination of optimum conditions in ITER tokamak by using zero-dimensional model

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The International Thermonuclear Experimental Reactor (ITER) tokamak can generate fusion energy in an acceptable method. In this study, the particle and energy equations were developed for \({\text{T}}\left( {{\text{D}},n} \right){}^{4}{\text{He}}\)\({\text{D}}\left( {{\text{D}},n} \right){}^{3}{\text{He}}\)\({\text{D}}\left( {{\text{D}},p} \right){\text{T}}\), and \({}^{3}{\text{He}}\left( {{\text{D}},p} \right){}^{4}{\text{He}}\) fusion reactions and optimum conditions were determined to achieve the maximum gain using differing mixtures of fuel. Also, the particle and energy equations were solved using the zero-dimensional model, and the ITER90H-P plasma parameters were calculated by the numerical methods. The possibility regarding the presence of impurities was ignored in all our calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B Vincent, N Hudon, L Lefèvre and D Dochain IFAC PapersOnLine 50 13038 (2017)

    Article  Google Scholar 

  2. B Vincent, N Hudon, L Lefèvre and D Dochain IFAC PapersOnLine 49 93 (2016)

    Article  Google Scholar 

  3. A Pajares and E Schuster IEEE Conference on Control Applications (CCA) p 617 (2016)

  4. A E Costley, J Hugill and P F Buxton Nucl. Fusion 55 033001 (2015)

    Article  ADS  Google Scholar 

  5. O Motojima Nucl. Fusion 55 104023 (2015)

    Article  ADS  Google Scholar 

  6. W Hui, B A Bamieh and G H Miley Fusion Technol. 25 318 (1994)

    Article  Google Scholar 

  7. B G Hong, D W Lee and S R In Nucl. Eng. Technol. 40 87 (2008)

    Article  Google Scholar 

  8. H Zohm Philos. Trans. R. Soc. A 377 20170437 (2019)

    Article  ADS  Google Scholar 

  9. C Powell and O J Hahn Nucl. Fusion 12 667 (1972)

    Article  Google Scholar 

  10. J P Ongena and G V Oost Fusion Sci. Technol. 61 3 (2012)

    Article  Google Scholar 

  11. T Tanabe Tritium: Fuel of Fusion Reactors p 27 (2017)

  12. S M Motevalli and F Fadaei Int. J. Modern Phys. E 21 1250078 (2012)

    Article  ADS  Google Scholar 

  13. S M Motevalli, T Mohsenpour and N Dashtban Eur. Phys. J. Plus 131 330 (2016)

    Article  Google Scholar 

  14. J P Freidberg Plasma Physics and Fusion Energy (New York: Cambridge University Press) (2008)

    Google Scholar 

  15. W M Stacey Jr Nucl. Fusion 13 843 (1973)

    Article  Google Scholar 

  16. S Garcia and J J Martinell Fusion Eng. Des. 147 111227 (2019)

    Article  Google Scholar 

  17. J J Martinell Radiat. Eff. Defects Solids 166 821 (2011)

    Article  ADS  Google Scholar 

  18. E Bertolini, F Engelmann, M A Hoffman and A Taroni Nucl. Fusion 17 955 (1977)

    Article  ADS  Google Scholar 

  19. M D Boyer and E Schuster IEEE International Conference on Control Applications (CCA) p 246 (2011)

  20. L M Hively Nucl. Fusion 17 873 (1977)

    Article  ADS  Google Scholar 

  21. E Schuster, M Krstić and G Tynan Fusion Sci. Technol. 43 18 (2003)

    Article  Google Scholar 

  22. J E Vitela and J J Martinell Plasma Phys. Control. Fusion 40 295 (1998)

    Article  ADS  Google Scholar 

  23. R J Hawryluk et al. Nucl. Fusion 55 053001 (2015)

    Article  ADS  Google Scholar 

  24. J E Menard Philos. Trans. R. Soc. A 377 20170440 (2019)

    Article  ADS  Google Scholar 

  25. S P Hirshman and D J Sigmar Nucl. Fusion 21 1079 (1981)

    Article  Google Scholar 

  26. A Pajares and E Schuster Fusion Eng. Des. 123 607 (2017)

    Article  Google Scholar 

  27. M Jakobs, N L Cardozo and R Jaspers Nucl. Fusion 54 122005 (2014)

  28. M D Boyer and E Schuster American Control Conference (ACC) 5043 (2012)

  29. N A Uckan 15th IEEE/NPSS Symposium. Fusion Engineering 1 183 (1993)

  30. N A Uckan et al. Fusion Technol. 26 327 (1994)

    Article  Google Scholar 

  31. E Schuster, M Krstić and G Tynan Fusion Eng. Des. 63 569 (2002)

    Article  Google Scholar 

  32. M D Boyer and E Schuster American Control Conference (ACC) 1207 (2013)

  33. S M Motevalli, N Dashtban, F Fadaei and F Asadi Bulg. J. Phys. 41 209 (2014)

    Google Scholar 

  34. M D Boyer and E Schuster Plasma Phys. Control. Fusion 56 104004 (2014)

    Article  ADS  Google Scholar 

  35. R A Gabrielli, et al. 29th International Symposium on Space Technology and Science, Paper. (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Dashtban.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motevalli, S.M., Dashtban, N. & Maleki, M. Determination of optimum conditions in ITER tokamak by using zero-dimensional model. Indian J Phys 95, 2211–2215 (2021). https://doi.org/10.1007/s12648-020-01857-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01857-6

Keywords

Navigation