Skip to main content
Log in

Optical solitons for the fractional \((3+1)\)-dimensional NLSE with power law nonlinearities by using conformable derivatives

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, the process of the extended direct algebraic method (EDAM) is used to obtain the optical solitons in fractional (3 + 1)-dimensional nonlinear Schrodinger equation through the conformable derivative. Firstly, this fractional equation is changed into the ordinary differential equation by using the wave variables transformation. Then, new several forms of optical solitons are obtained by using EDAM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H Triki et al. Optik 157 156 (2018)

    Article  ADS  Google Scholar 

  2. M Inc, Z S Korpinar, M M Al Qurashi and D Baleanu Advances in Mechanical Engineering 8 1 (2016)

    Article  Google Scholar 

  3. S Jana and S Konar Phys. Lett. A 362 435 (2007)

    Article  ADS  Google Scholar 

  4. B Younas and M Younıs, Pramana - J. Phys. 94:3 (2020)

    Article  ADS  Google Scholar 

  5. A H Bhrawy and M A Abdelkawy Indian J. Phys. 87 665 (2013)

    Article  ADS  Google Scholar 

  6. S T Raza Rizvi, I Afzal, K Ali and M Younis, Acta Physica Polonica A 136 237 (2019)

    Article  Google Scholar 

  7. H Triki and A M Wazwaz Waves Random Complex Media 27 587 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  8. M Inc, A I Aliyu, A Yusuf and D Baleanu, Superlattices and Microstructures 112 296 (2017)

    Article  ADS  Google Scholar 

  9. A H Bhrawy, M A Abdelkawy and A Biswas Optik 125 1537 (2014)

    Article  ADS  Google Scholar 

  10. L Gagnont, B Grammaticos, A Ramanil and P Winternitz J. Phys. A Math. Gen. 22 499 (1989)

    Article  ADS  Google Scholar 

  11. L Gagnon and C Par Opt. Soc. Am. 8 601 (1991)

    Article  ADS  Google Scholar 

  12. L Gagnon and P Winternitz J.Phys. A 22 469 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  13. A Arif et al. Eur. Phys. J. Plus. 134 303 (2019)

    Article  Google Scholar 

  14. R Sakthivel, C Chun and A A Bae Int. J. Comput. Math. 87 2601 (2010)

    Article  MathSciNet  Google Scholar 

  15. A M Wazwaz, Appl. Math. Comput. 200 160 (2008)

    MathSciNet  Google Scholar 

  16. M L Wang, Y B Zhou and Z B Li Phys. Phys. Lett. A 216 67 (1996)

    Article  ADS  Google Scholar 

  17. A H Khater, D K Callebaut, A H Bhrawy and M A Abdelkawy J. Comput. Appl. Math. 242 28 (2013)

    Article  MathSciNet  Google Scholar 

  18. S K Liu, Z T Fu and S D Liu Phys. Phys. Lett. A 289 69 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  19. W-X Ma, Front. Math. China, 14(3): 619–629 (2019)

    Article  MathSciNet  Google Scholar 

  20. W-X Ma, Mod Phys Lett B, 33, 1950457 (2019)

    Article  ADS  Google Scholar 

  21. W-X Ma, J Geom Phys, 133 10-16 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. H Rezazadeh, H Tariq, M Eslami, M Mirzazadeh and Q Zhoue Chinese Journal of Physics 56 2805 (2018)

    Article  ADS  Google Scholar 

  23. R Khalil, M Al Horani, A Yousef and M Sababheh J. Comput. Appl. Math. 264 65 (2014)

    Article  MathSciNet  Google Scholar 

  24. M Eslami, F S Khodadad, F Nazari and H Rezazadeh Opt. Opt. Quant. Electron. 49 391 (2017)

    Article  Google Scholar 

  25. K Hosseini, P Mayeli and R Ansari Waves Random Complex Media 28 426 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. Z Korpinar Thermal Science 22 87 (2018)

    Article  Google Scholar 

  27. Z S Korpinar and M Inc Optik 166 77(2018)

    Article  ADS  Google Scholar 

  28. F Tchier, M Inc, Z S Korpinar and D Baleanu Advances in Mechanical Engineering 8 1 (2016)

    Article  Google Scholar 

  29. F Ferdous et al. Optik 178 439 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

B. Almohsen is Supported by Researchers Supporting Project Number (RSP-2020/158), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Inc.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korpinar, Z., Inc, M., Almohsen, B. et al. Optical solitons for the fractional \((3+1)\)-dimensional NLSE with power law nonlinearities by using conformable derivatives. Indian J Phys 95, 2143–2154 (2021). https://doi.org/10.1007/s12648-020-01853-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01853-w

Keywords

Navigation