Skip to main content

Advertisement

Log in

Change in internal energy of viscoelastic fluid flow between two rotating parallel plates having variable fluid properties

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this study, second-grade fluid is taken into account in order to examine its rotating behavior with heat and mass transfer effects. The analysis is carried out between two parallel plates. The study of heat and mass transfer is accomplished by taking the effects of non-constant diffusivity, conductivity and viscosity. A chemical reaction is taken in the form of activation energy. Moreover, it is assume that the kinetic energy of the fluid particles is converted into internal energy. Signifying fundamental equations are tracked by constructing numerical form solutions for velocity, temperature and concentration distributions, while assuming variable fluid properties and internal energy change. Bvp4c technique is employed by considering second-grade fluid parameter and variable fluid properties to be very small. The impact of emerging parameters on velocity, temperature and concentration distributions is examined through graphical depiction. A direct relation is taken between concentration and diffusivity, temperature and thermal conductivity, whereas the indirect relation is assumed for viscosity. Heat transfer is minor for a fluid with variable conductivity and viscosity as likened to the fluid with constant conductivity and viscosity. For uplifting values of rotation parameter, the fluid velocity magnifies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ρ :

Density

μ :

Dynamic viscosity

Ω:

Angular velocity

\(k_{r}^{2}\) :

Reaction rate

k :

Boltzmann constant

\(\alpha_{1} ,\alpha_{2}\) :

Viscoelastic parameters

K :

Thermal conductivity

D :

Mass diffusivity

K 2 :

Rotation parameter

R :

Viscosity parameter

u w :

Velocity of the stretched sheet

\(\delta\) :

Temperature difference parameter

\(\sigma_{m}\) :

Chemical reaction parameter

x, y, z :

Cartesian coordinates

u, v, w :

Velocity components

Ec:

Eckert number

Sc:

Schmidt number

Re:

Renolds number

T h :

Wall temperature

C h :

Wall concentration

\(\tau_{w}\) :

Wall shear stress

\(q_{w}\) :

Surface heat flux

\(j_{w}\) :

Surface mass flux

\(\theta\) :

Dimensionless temperature

\(\varphi\) :

Dimensionless concentration

E :

Activation energy

Nu:

Nusselt number

Sh:

Sherwood number

c p :

Specific heat

C f :

Skin friction coefficient

Pr:

Prandtl number

\(\theta_{r}\) :

Variable viscosity parameter

n :

Fitted rate constant

\(\varepsilon\) :

Thermal conductivity parameter

\(\varepsilon_{1}\) :

Mass diffusivity parameter

\(L\) :

Dimensionless length parameter

References

  1. H C Brinkman Applied Scientific Research 2 120 (1951).

  2. B Gebhart Journal of Fluid Mechanics 14 225 (1962).

  3. T Shigechi, S Momoki and D Ganbat Reports of the Faculty of Engineering Nagasaki University 29 153 (1999).

    Google Scholar 

  4. M F El-Amin Journal of Magnetism and Magnetic Materials 263 337 (2003).

  5. J Alinejad and S Samarbakhsh Journal of Applied Mathematics (2012).

  6. M S Khan, I Karim, L E Ali and A Islam International Nano Letters 2 (2012).

  7. M Y Malik, A Hussain, T Salahuddin and M Awais AIP Advances 6 (2016).

  8. T Salahuddin, I Khan, M Y Malik, M Khan, A Hussain and M Awais The European Physical Journal Plus 132 205 (2017).

    Article  ADS  Google Scholar 

  9. M Y Malik, A Hussain, T Salahuddin, M Awais, S Bilal and F Khan AIP Advances 6 (2016).

  10. A Hussain, M Y Malik, T Salahuddin, S Bilal and M Awais Journal of Molecular Liquids 231 341 (2017).

    Article  Google Scholar 

  11. S P A Devi and D V kumara Ain Sham Engineering Journal 9 1161 (2018).

  12. N S Ismail, N M Arifin, R Nazar and N Bachok Chinese Journal of Physics 57 116 (2019).

    Article  ADS  Google Scholar 

  13. S Arrhenius Zeitschrift fr Physikalische Chemie 4 96 (1889).

  14. A R Bestman International Journal of Energy Research 14 389 (1990).

  15. O D Makinde, P O Olanrewaju and W M Charles Africa Matematika 22 65 (2011).

    Article  Google Scholar 

  16. Z Shafique, M Mustafa and A Mushtaq Results in Physics 6 627 (2016).

    Article  ADS  Google Scholar 

  17. K L Hsiao Energy 130 486 (2017).

  18. A Zeeshan, N Shehzad and R Ellahi Results in Physics 8 502 (2018).

    Article  ADS  Google Scholar 

  19. M I Khan, S Qayyum, T Hayat, M Waqas, M I Khan and A Alsaedi Journal of Molecular Liquids 259 274 (2018).

    Article  Google Scholar 

  20. A Hamid, Hashim and M Khan Journal of Molecular Liquids 262 435 (2018).

    Article  Google Scholar 

  21. M Irfan, W A Khan, M Khan and M M Gulzar Journal of Physics and Chemistry of Solids 125 141 (2019).

    Article  ADS  Google Scholar 

  22. L Ahmed and M Khan International Journal of Hydrogen Energy 44 10197 (2019).

    Article  Google Scholar 

  23. R Bandelli, K R Rajagopal and G P Galdi Acta Mechanica Sinica 47 661 (1995).

  24. W Tan and M Xu Acta Mechanica Sinica 18 342 (2002).

    Article  ADS  Google Scholar 

  25. W Tan and T Masuoka Journal of Non-Linear Mechanics 40 515 (2005).

    Article  Google Scholar 

  26. M M Rashidi, S A Majid and A Mostafa Mathematical Problems in Engineering 18 706840 (2010).

    Google Scholar 

  27. M Jamil and C Fetecau Journal of Non-Newtonian Fluid Mechanics 165 1700 (2010).

    Article  Google Scholar 

  28. T Hayat, M Qasim, S A Shehzad and A Alsaedi Alexandria Engineering Journal 53 455 (2014).

    Article  Google Scholar 

  29. A Haider, T Salahuddin and M Y Malik Canadian Journal of Physics (2018).

  30. N S Khan, S Islam, T Gul, I Khan, W Khan and L Ali Alexandria Engineering Journal 57 1019 (2018).

    Article  Google Scholar 

  31. G I Taylor Proceeding of the Royal Society A 100 114 (1921).

  32. H A Attia and N A Kotb Acta Mechanics 117 215 (1996).

    Article  Google Scholar 

  33. K Vajravelua and B V R Kumar International Journal of Non-Linear Mechanics 39 13 (2004).

    Article  ADS  Google Scholar 

  34. J V R Reddy, S Sugunamma and N Sandeeep International Journal of Engineering Research in Africa 20 130 (2016).

    Google Scholar 

  35. Z Shah, T Gul, A M Khan, I Ali and S Islam Journal of Engineering Technology 6 280 (2017).

    Google Scholar 

  36. Z Shah, T Gul, S Islam, M A Khan, E Bonyah, F Hussain, S Mukhtar and M Ullah Results in Physics 10 36 (2018).

    Article  ADS  Google Scholar 

  37. M Khan, T Salahuddin and M Y Malik Journal of the Brazilian Society of Mechanical Sciences and Engineering 41 78 (2019).

    Article  Google Scholar 

  38. A M Salem Physics Letters A 369 315 (2007).

  39. Y Khan, Q Wu, N Faraz and A Yildirim Computers and Mathematics with Applications 61 3391 (2011).

    Article  MathSciNet  Google Scholar 

  40. S P A Devi and M Prakash Journal of the Nigerian Mathematical Society 34 318 (2015).

    Article  MathSciNet  Google Scholar 

  41. I H Qureshi, M Nawaz, S Rana and T Zubair Communications in Theoretical Physics 70 49 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  42. M Khan, T Salahuddin, A Tanveer, M Y Malik and A Hussain Chinese Journal of Chemical Engineering (2019).

  43. R Jhorar, D Tripathi, M M Bhatti and R Ellahi Indian Journal of Physics 92 1229 (2018).

    Article  ADS  Google Scholar 

  44. M M Bhatti, A Zeeshan, D Tripathi and R Ellahi Indian Journal of Physics 92 423 (2018).

    Article  ADS  Google Scholar 

  45. S Z Alamri, A A Khan, M Azeez and R Ellahi Physics Letters A 383 276 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  46. R S Saif, T Hayat, R Ellahi, T Muhammad and A Alsaedi Results in Physics 7 2821 (2017).

    Article  ADS  Google Scholar 

  47. R Ellahi, A Zeeshan, F Hussain and A Asadollahi Symmetry 11 276 (2019).

    Article  Google Scholar 

  48. A Majeed, A Zeeshan, S Z Alamri and R Ellahi Neural Computing and Applications 30 1947 (2018).

    Article  Google Scholar 

  49. R Ellahi, M H Tariqb, M Hassanc and K Vafai Journal of Molecular Liquids 229 339 (2017).

    Article  Google Scholar 

  50. R Ellahi, A Zeeshan, F Hussain and T Abbas Coatings 8 422 (2018).

    Article  Google Scholar 

  51. I L Animasaun, C S K Raju and N Sandeep Alexandria Engineering Journal (2016).

  52. M M Rashidi, M J Babu, N Sandeep and M E Ali Journal of Computational and Theoretical Nanoscience (2019).

  53. K A Kumar, V Sugunamma and N Sandeep Heat Transfer (2019).

  54. K A Kumar, V Sugunamma1 and N Sandeep and M T Mustafa Scientific Reports 9 14706 (2019).

  55. K A Kumar, V Sugunamma and N Sandeep Journal of Thermal Analysis and Calorimetry 13 8700 (2016).

    Google Scholar 

  56. K A Kumar, N Sandeep, V Sugunamma and I Animasaun Journal of Thermal Analysis and Calorimetry 1 (2019).

  57. K A Kumar, V Sugunamma and N Sandeep Journal of Non-Equilibrium Thermodynamics 22 (2018).

  58. K A Kumar, V Sugunamma and N Sandeep Journal of Non-Equilibrium Thermodynamics 69 (2018).

  59. Kai-Long Hsiao Applied Thermal Engineering (2016).

  60. Kai-Long Hsiao International Journal of Heat and Mass Transfer 112 983 (2017).

  61. Kai-Long Hsiao Applied Thermal Engineering 98 850 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Arshad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salahuddin, T., Arshad, M., Siddique, N. et al. Change in internal energy of viscoelastic fluid flow between two rotating parallel plates having variable fluid properties. Indian J Phys 95, 1801–1811 (2021). https://doi.org/10.1007/s12648-020-01833-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01833-0

Keywords

Navigation