Excitation functions of 58Ni(n, charged particle) from threshold to 20 MeV using NLD models


58Ni(n, p)58Co, 58Ni(n, 2p)57Fe, 58Ni(n, d)57Co, 58Ni(n, t)56Co and 58Ni(n, α)55Fe reactions are studied using different NLD models from threshold to 20 MeV. Five phenomenological and two microscopic NLD are employed using TALYS 1.9 and EMPIRE 3.2.2 nuclear reaction codes for theoretical calculations. Experimental data taken from EXFOR data library were compared with these. Statistical factors H, R and D have been used to identify the best fitted model. Level density parameters have also been adjusted for further fine-tuning with experimental data. CTFG model is appeared to be a good theoretical fabricator for the neutron-induced 58Ni reaction with newly adjusted level density parameters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. [1]

    Y Amano IAEA Bull. 584 1 (2017)

  2. [2]

    M Yiğit Appl. Radiat. Isot. (2018) https://doi.org/10.1016/j.apradiso.2018.05.008

  3. [3]

    T Allen, J Busby, M Meyer and D Petti Mater. Today 13 14 (2010)

    Article  Google Scholar 

  4. [4]

    M Yiğit Appl. Radiat. Isot. 135 115–122 (2018)

  5. [5]

    M Yiğit Appl. Radiat. Isot. 154 (2019)

  6. [6]

    A K M Rezaur Rahman, A K M M H Meaze, S R Chakraborty and Md Mohsin Indian J. Phys. (2019) https://doi.org/10.1007/s12648-019-01555-y

  7. [7]

    M. Yiğit J. Fusion Energ. 34 1392–1398 (2015). https://doi.org/10.1007/s10894-015-9978-4

  8. [8]

    M M Pylypenko, Y S Stadnik, A O Drobyshevska, Voprosy Atomnoj Nauki i Tekhniki 50 159 (2019)

    Google Scholar 

  9. [9]

    H Özdoğan, M Şekerci, İ H Sarpün and A Kaplan Appl. Radiat. Isot. 140 29 (2018)

    Google Scholar 

  10. [10]

    V Çapali, M Şekerci, H Özdoğan, A Kaplan Cumhuriyet. Sci. J. 37 151(2016)

  11. [11]

    A Nikjou, M Sadeghi Appl. Radiat. Isot. 136 45 (2018)

    Article  Google Scholar 

  12. [12]

    I H Sarpün, A Aydın and H Pekdoğan EPJ Web Conf. 146 1(2017)

    Google Scholar 

  13. [13]

    M Yiğit Appl. Radiat. Isot. 140 355 (2018)

  14. [14]

    M Yiğit Appl. Radiat. Isot. 130 109 (2017)

  15. [15]

    N Karpuz Acta Phys. Polonica A 130 306 (2016)

  16. [16]

    A Kaplan, İH Sarpün, A Aydın, E Tel, V Çapalı and H Özdoǧan Phys. Atom. Nucl. 78 53 (2015)

    ADS  Article  Google Scholar 

  17. [17]

    T Kaeano, T Sanami, M Baba and H Nakashima J. Nucl. Sci. Technol. 36 256 (1999)

    Article  Google Scholar 

  18. [18]

    Mohamadrez K Bakhta, Mahdi Sadeghi, Seyed J Ahmadi, Sodeh S. Sadjadi and Claudio Tenreiro Nucl. Med. Commun. 34 5–12 (2013)

  19. [19]

    A J Koning, S Hilaire and M C Duijvestijn, “TALYS-1.0”, Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France, (editors O Bersillon), F Gunsing, E Bauge, R Jacqmin and S Leray EDP Sci. 211–214 (2008)

  20. [20]

    A V Ignatyuk, J L Weil, S Raman and S Kahane Phys. Rev. C 47 1504 (1993)

    Google Scholar 

  21. [21]

    Vladimir Zelevinsky, Sofia Karampagia and Alexander Berlaga Phys. Lett. B 783 428 (2018)

    Google Scholar 

  22. [22]

    A Gilbert, A G W Cameron Can. J. Phys. 43 1446 (1965)

  23. [23]

    W Dilg, W Schatlt and H Vonach Nucl. Phys. A 217 269 (1973)

    Article  Google Scholar 

  24. [24]

    T S Ganesapandy, J J Jeremiah, S S Dahiwale, S D Dhole and V N Bhoraskar Appl. Radiat. Isot. 150 70 (2019)

    Article  Google Scholar 

  25. [25]

    M Herman, R Capote, M Sin, A Trkov, B V Carlson, P Oblozinsky, C M Mattoon, H Wienkey, S Hoblit, Young-Sik Cho, G P A Nobre, V Plujko, V Zerkin EMPIRE-3.2 Malta User’s Manual INDC(NDS) 0603BNL 101378 (2013)

  26. [26]

    M. Yigit, A Kara Nucl. Eng. Technol. (2017) http://dx.doi.org/10.1016/j.net.2017.03.006

    Article  Google Scholar 

  27. [27]

    L Deilami-Nezhad, L Moghaddam-Banaem, M Sadeghi and M Asgari Appl. Radiat. Isot. (2016) http://dx.doi.org/10.1016/j.apradiso.2016.09.004

    Article  Google Scholar 

  28. [28]

    M Sadeghi, M Enferadi, H Nadi J. Radioanal. Nucl. Chem. 286 259–263 (2010). https://doi.org/10.1007/s10967-010-0649-7

    Article  Google Scholar 

  29. [29]

    A K M Rezaur Rahman, A Awal J. Radioanal. Nucl. Chem. (2019) https://doi.org/10.1007/s10967-019-06973-0

Download references

Author information



Corresponding author

Correspondence to A. K. M. Rezaur Rahman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rezaur Rahman, A.K.M., Asif Zubair, M. Excitation functions of 58Ni(n, charged particle) from threshold to 20 MeV using NLD models. Indian J Phys 95, 1231–1238 (2021). https://doi.org/10.1007/s12648-020-01808-1

Download citation


  • Reactor structured material
  • Level density parameter
  • Nickel