Skip to main content
Log in

Half-lives of proton emitters studied with the KDE0v1 Skyrme interaction

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The half-life of proton radioactivity of proton emitters is investigated theoretically by using KDE0v1 Skyrme interaction. The total barrier potential in the proton radioactive nuclei is calculated as the sum of the nuclear, Coulomb and centrifugal contributions. The Hartree–Fock nuclear density distributions are used in calculating the nuclear as well as the Coulomb interaction potentials. The quantum mechanical tunneling probability is calculated within the WKB approximation. These calculations provide reasonable estimate for the observed proton radioactivity lifetimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. S Hofmann, W Reisdorf, G Munzenberg, F P Hessberger, J R H Schneider and P Armbruster Z. Phys. A305 111 (1982)

    Article  ADS  Google Scholar 

  2. B Buck, A C Merchant and S M Perez Phys. Rev. C45 1688 (1992)

    ADS  Google Scholar 

  3. S Aberg, P B Semmes and W Nazarewicz Phys. Rev. C56 1762 (1997)

    ADS  Google Scholar 

  4. S Aberg, P B Semmes and W Nazarewicz Phys. Rev. C58 3011 (1998)

    ADS  Google Scholar 

  5. M Balasubramaniam and N Arunachalam Phys. Rev. C71 014603 (2005)

    ADS  Google Scholar 

  6. D N Basu, P Roy Chowdhury and C Samanta Phys. Rev. C72 051601(R) (2005)

    ADS  Google Scholar 

  7. D S Delion, R J Liotta and R Wyss (and references therein) Phys. Rep.424 113 (2006)

    ADS  Google Scholar 

  8. M Bhattacharya and G Gangopadhyay Phys. Lett. B651 263 (2007)

    Article  ADS  Google Scholar 

  9. D N Basu, P Roy Chowdhury and C Samanta Nucl. Phys. A811 140 (2008)

    Article  ADS  Google Scholar 

  10. T R Routray, S K Tripathy, B B Dash, B Behera and D N Basu Eur. Phys. J. A47 92 (2011)

    Article  ADS  Google Scholar 

  11. L S Ferreira, E Maglione and P Ring Phys. Lett. B701 508 (2011)

    Article  ADS  Google Scholar 

  12. T R Routray, A Mishra, S K Tripathy, B Behera and D N Basu Eur. Phys. J. A48 77 (2012)

    Article  ADS  Google Scholar 

  13. S G Kadmensky and V P Bugrov Phys. At. Nucl. 59 399 (1996)

    Google Scholar 

  14. S Mahadevan, P Prema, C S Shastry and Y K Gambhir Phys. Rev. C74 057601 (2006)

    ADS  Google Scholar 

  15. F Guzmán, M Goncalves, O A P Tavares, S B Duarte, F García and O Rodríguez Phys. Rev. C59 R2339 (1999)

    ADS  Google Scholar 

  16. J M Dong, H F Zhang and G Royer Phys. Rev. C79 054330 (2009)

    ADS  Google Scholar 

  17. J -M Dong, H -F. Zhang, W Zuo and J -Q Li Chin. Phys. C34 182 (2010)

  18. H F Zhang, J M Dong, Y J Wang, X N Su, Y J Wang, L Z Cai, T B Zhu, B T Hu, W Zuo and J Q Li Chin. Phys. Lett. 26 072301 (2009)

    Article  ADS  Google Scholar 

  19. H F Zhang, Y J Wang, J M Dong, J Q Li and W Scheid J. Phys. G37 085107 (2010)

    Article  ADS  Google Scholar 

  20. C N Davids and H Esbensen Phys. Rev. C69 034313 (2004)

    Article  ADS  Google Scholar 

  21. L S Ferreira and E Maglione Phys. Rev. Lett. 86 1721 (2001)

    Article  ADS  Google Scholar 

  22. E Maglione, L S Ferreira and R J Liotta Phys. Rev. C59 R589 (1999)

    ADS  Google Scholar 

  23. D Seweryniak et al Phys. Rev. Lett. 99 082502 (2007)

  24. P Talou, N Carjan, C Negrevergne and D Strottman Phys. Rev. C62 014609 (2000)

    ADS  Google Scholar 

  25. D Vautherin and D M Brink Phys. Rev. C5 626 (1972)

    ADS  Google Scholar 

  26. Y M Engel, D M Brink, K Goeke, S J Krieger and D Vautherin Nucl. Phys. A249 215 (1975)

    Article  ADS  Google Scholar 

  27. P Bonche and D Vautherin Nucl. Phys. A372 496 (1981)

    Article  ADS  Google Scholar 

  28. B K Agrawal, S Shlomo and V K Au Phys. Rev. C72 014310 (2005)

    ADS  Google Scholar 

  29. E C Kemble Phys. Rev. 48 549 (1935)

  30. E Chabanat, P Bonche, P Haensel, J Meyer and R Schaeffer Nucl. Phys. A627 710 (1997)

    Article  ADS  Google Scholar 

  31. E Chabanat, P Bonche, P Haensel, J Meyer and R Schaeffer Nucl. Phys. A635 231 (1998)

    Article  ADS  Google Scholar 

  32. E Chabanat, P Bonche, P Haensel, J Meyer and R Schaeffer Nucl. Phys. A643 441 (1998)

    Google Scholar 

  33. C B Dover and N V Giai Nucl. Phys. A190 373 (1972)

    Article  ADS  Google Scholar 

  34. M Dutra, O Lourenco, J S S Martins, A Delfino, J R Stone and P D Stevenson Phys. Rev. C85 035201 (2012)

    ADS  Google Scholar 

  35. P B Demorest, T Pennucci, S M Ransom, M S E Roberts and J W T Hessels Nature 467 1081(2010)

    Article  ADS  Google Scholar 

  36. K Madhuri, D N Basu, T R Routray and S P Pattnaik Eur. Phys. J. A 53 151 (2017)

    Article  ADS  Google Scholar 

  37. P D Stevenson, P M Goddard, J R Stone and M Dutra AIP Conference Proceedings 1529 p 262 (2013). arXiv:1210.1592

  38. A A Sonzogni Nucl. Data Sheets 95 1 (2002)

    Article  ADS  Google Scholar 

  39. P J Woods et al. Phys. Rev. C69 051302(R) (2004)

    ADS  Google Scholar 

  40. D T Joss et al. Phys. Lett. B641 34 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Madhuri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhuri, K., Basu, D.N., Routray, T.R. et al. Half-lives of proton emitters studied with the KDE0v1 Skyrme interaction. Indian J Phys 95, 1225–1230 (2021). https://doi.org/10.1007/s12648-020-01801-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01801-8

Keywords

Navigation