Effect of binary mixture of Nd–Zn ions on the electrical, structural and dielectric behavior of calcium-barium M-type hexaferrite nanoparticles

Abstract

This study reports the synthesis and characterization of Nd–Zn-doped nanocrystalline Ca0.5Ba0.5-xNdxZnyFe12-yO19 (x = 0.00–0.10; y = 0.00–1.00) hexaferrites prepared by sol–gel auto combustion method. Doping of the binary mixture of Nd–Zn enhances the electrical and structural properties of Ca0.5Ba0.5-xNdxZnyFe12-yO19 hexaferrite nanoparticles. The required annealing temperature was obtained on the basis of TG/DTA analysis. The results of X-ray diffraction patterns revealed that dopant contents are inversely related to lattice parameters. The average nanocrystalline size lies in the range from 16 to 29 nm. The DC electrical resistivity decreased, whereas the drift mobility was increased by increasing doping of Nd–Zn. Maxwell–Wagner and Koop’s models were used to explain the dielectric constant and dielectric loss versus frequency. Nd–Zn doping favored the decrease in dielectric losses to a large extent, so the barium hexaferrite along with these dopants is very useful for high frequency applications. AC conductivity at low frequencies explained the grain boundary behavior; however, the dispersion at high frequency may be attributed to the conductivity of grains. The M–H loop indicated that the coercivity changed as a result of increase in grain size and saturation magnetization was increased as a result of strong and magnetic cations distribution on interstitial sites.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. [1]

    M J Iqbal, M N Ashiq and I H Gul Journal of Magnetism and Magnetic Materials322, 1720 (2010)

    ADS  Article  Google Scholar 

  2. [2]

    S Hussain and A Maqsood Journal of Magnetism and Magnetic Materials316, 73 (2007)

    ADS  Article  Google Scholar 

  3. [3]

    H M Khan, M U Islam, Y Xu, M A Iqbal, I Ali, M Ishaque, M A Khan, N Karamat and I Sadiq, J Sol-Gel Sci Technol78, 151 (2016)

    Article  Google Scholar 

  4. [4]

    K Yoon, D Lee, H Jung and S Yoon J. Mater. Sci. 27 2941 (1992)

    ADS  Article  Google Scholar 

  5. [5]

    M R Eraky Journal of Magnetism and Magnetic Materials324 1034 (2012)

  6. [6]

    H Luo, B K Rai, S R Mishra, V V Nguyen and J P Liu Journal of Magnetism and Magnetic Materials324 2602 (2012)

  7. [7]

    H Yanbing, J Sha, S Lina, T Quan, L Qin, J Hongxiao, J Ding feng, B Hong, G Hongliang and X Wang J. Alloys Compd.486, 348 (2009)

    Article  Google Scholar 

  8. [8]

    S Hussain and A Maqsood Mater Lett62, 1002 (2008)

    Article  Google Scholar 

  9. [9]

    B D Cullity Introduction to Magnetic Material (New York: Addison-Wesley) (1972)

  10. [10]

    W Jing, Z Hong, B Shuxin, C Ke and Z Changrui Journal of Magnetism and Magnetic Materials312, 310 (2007)

    ADS  Article  Google Scholar 

  11. [11]

    L Lechevallier, J M Le Breton, J F Wang and I R Harris Journal of Magnetism and Magnetic Materials269, 192 (2004)

    ADS  Article  Google Scholar 

  12. [12]

    I Ali, M U Islam, M S Awan and M Ahmad Journal of Alloys and Compounds547, 118 (2013)

    Google Scholar 

  13. [13]

    M J Iqbal and S Farooq Materials Research Bulletin46, 662 (2011)

    Article  Google Scholar 

  14. [14]

    N Rezlescu, C Doroftei, E Rezlescu and P D Popa Phys. Status Solidi15, 3844 (2006)

    ADS  Article  Google Scholar 

  15. [15]

    M S Niasari, F Davar and T Mahmoudi Polyhedron28, 1455 (2009)

    Article  Google Scholar 

  16. [16]

    M J Iqbal and R A Khan Journal of Alloys and Compounds478, 847 (2009)

    Article  Google Scholar 

  17. [17]

    S Che, J Wang and Q Chen J. Phys Condens. Matter. 15, L335 (2003)

    Article  Google Scholar 

  18. [18]

    S Chang, S Kangning and C Pengfei Journal of Magnetism and Magnetic Materials324, 805 (2012)

    ADS  Google Scholar 

  19. [19]

    C Kittle An Introduction to Solid State Physics, 5th ed (New York: Wiley) (1996)

  20. [20]

    T Abbas, M U Islam and M A Chaudhry Mod. Phys. Lett. B9, 1419 (1995)

    Google Scholar 

  21. [21]

    J Smit and H P J Wijn Ferrites (New York: Wiley) (1959)

    Google Scholar 

  22. [22]

    E J W Verwey and J H De Boer Rec. Trans. Chem. Des. Pays. Bas. 55 531 (1936)

    Article  Google Scholar 

  23. [23]

    M K Shobanaa, S Sankara, V Rajendranb, M K Sho-banaa, S Sankara and V Rajendranb Material Chemistry Physics113, 12, (2009)

    Google Scholar 

  24. [24]

    H Khan, M Islam, I Ali and M Rana Materials Sciences and Applications8, 1089 (2011)

    Google Scholar 

  25. [25]

    M Asif Iqbal, M ul-Islam, I Ali, H M Khan, G Mustafa and I Ali Ceramics International39 1545 (2013)

  26. [26]

    K W Wagner Ann. Phys.40 (1913)

  27. [27]

    A A Sattar, A H Wafik and H M El-Sayed J. Mater. Sci.36 (2001)

  28. [28]

    C Koops Phys. Rev.83 (1951)

  29. [29]

    J K Park and D Y Kim Journal American Ceramic Society79, 1405 (1996)

    Article  Google Scholar 

  30. [30]

    M J Iqbal, M N Ashiq, P H Gomez and J M Munoz J. Magn. Magn. Mater320 (2008)

  31. [31]

    J Zhu, K J Tseng and C F Foo IEEE Trans. Magn.36 (2000)

  32. [32]

    A S Hudson Marconi Rev37 (1968)

  33. [33]

    A K Jonscher Dielectric Relaxation in Solids (London: Chelsea Dielectrics Press) (1982)

  34. [34]

    J Maxwell Electricity and Magnetism, vol. 1 (London: Oxford University Press) (1873)

  35. [35]

    C G Koops, Phys. Rev.83 (1951)

  36. [36]

    D A Dler, Solid State Physics21, 1 (1968)

    Article  Google Scholar 

  37. [37]

    C Cropichka Ferrite Physics and Its Magnetic Oxides (Moscow: Mir Publisher) (1979)

  38. [38]

    E.J.W. Verwey, J.H. de Boer Proceedings of the Physical Society 49 (1937)

  39. [39]

    E J Verwey, P W Haaijman, F C Romeyn and C W Oostenhout Philips Research Reports9 (1954)

  40. [40]

    M Y Emran, M A Shenashen, A A Abdelwahab, H Khalifa, M Mekawy, N Akhtar, M Abdelmottaleb and S A El-Safty Journal of Applied Electrochemistry48,529 (2018)

    Google Scholar 

  41. [41]

    M Y Emran, M A Shenashen, A A Abdelwahab, M Abdelmottaleb, M Khairy and S A El-Safty, Electrocatalysis9, 514 (2018)

    Article  Google Scholar 

  42. [42]

    M U Islam, F Aen, S B Niazi, M Azhar Khan, M Ishaque, T Abbas and M U Rana, Materials Chemistry and Physics109, 482 (2008)

    Google Scholar 

  43. [43]

    M Y Emran, S A El-Safty, M A Shenashen and T Minowa Sens. Actuators B Chem284, 456 (2019)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hasan M. Khan or M. U. Islam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, H.M., Sadiq, I., Ali, K. et al. Effect of binary mixture of Nd–Zn ions on the electrical, structural and dielectric behavior of calcium-barium M-type hexaferrite nanoparticles. Indian J Phys (2020). https://doi.org/10.1007/s12648-020-01760-0

Download citation

Keywords

  • Hexaferrites
  • Electrical properties
  • Dielectric constant
  • Resistivity
  • Drift mobility

PACS No.

  • 61.46.+w
  • 13.40.Em
  • 61.46.+w
  • 61.10.Nz
  • 61.05.−a