Skip to main content
Log in

Structural transformation in \((\hbox {MgO})_{{{n}}}\) clusters using a gradient-only strategy and its comparison with a full Hessian-based calculation

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the work, we intend to compare performance of two different techniques for locating transition state and constructing reaction paths for structural transformations in \((\hbox {MgO})_{{\textit{n}}}\) cluster with n = 6, 8, 9, 10, 11, 12, 15 and 16. The work has been carried out using an empirical potential energy surface to describe major interactions and using the stochastic optimization technique of simulated annealing to search out the surface. The two different strategies taken up for investigation involve one in which a full evaluation of Hessian matrix and its subsequent diagonalization have been done. The other strategy is based on calculating first derivatives or gradient only and using the information of gradients to evaluate the sign of the first eigenvalue of Hessian. As the second strategy gets rid of the costly process of evaluating second derivatives, it is expected to be a computationally advantageous option. The entire work tries to establish this notion and presents quantitative results in support of the proposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A K Pathak, T Mukherjee and D K Maity Chem. Phys. Lett. 454 17 (2008)

    ADS  Google Scholar 

  2. A K Pathak, T Mukherjee and D K Maity J. Chem. Phys. 124 024322 (2006)

    ADS  Google Scholar 

  3. S Guha, S G Neogi and P Chaudhury J. Chem. Sci. 126 659 (2014)

    Google Scholar 

  4. E G Dikken, W H Robertson and M A Johnson J. Phys. Chem. A 108 64 (2004)

    Google Scholar 

  5. S G Neogi and P Chaudhury J. Comp. Chem. 34 471 (2013)

    Google Scholar 

  6. S S Xantheas J. Am. Chem. Soc. 117 10373 (1995)

    Google Scholar 

  7. F Calvo, F Y Naumkin and D J Wales J. Chem. Phys. 135 124308 (2011)

    ADS  Google Scholar 

  8. P Naskar and P Chaudhury Phys. Chem. Chem. Phys. 18 16245 (2016)

    Google Scholar 

  9. P Ayotte, S B Nielsen, G H Weddle, M A Johnson and S S Xantheas J. Phys. Chem. A 103 10665 (1999)

    Google Scholar 

  10. S G Neogi, S Talukder and P Chaudhury Struct. Chem. 25 909 (2014)

    Google Scholar 

  11. S Bell and J S Crighton J. Chem. Phys. 80 2464 (1984)

    ADS  Google Scholar 

  12. G Henkelman, B P Uberuaga and H Jónsson J. Chem. Phys. 113 9901 (2000)

    ADS  Google Scholar 

  13. G Henkelman and H Jónsson J. Chem. Phys. 113 9978 (2000)

    ADS  Google Scholar 

  14. P L Geissler, C Dellago and D Chandler Chem. Phys. Phys. Chem. 1 1317 (1999)

    Google Scholar 

  15. C Dellago, P G Bolhuis and D Chandler J. Chem. Phys. 108 9236 (1998)

    ADS  Google Scholar 

  16. C Dellago, P G Bolhuis and D Chandler J. Chem. Phys. 110 6617 (1999)

    ADS  Google Scholar 

  17. D J Wales Chem. Phys. Lett. 166 419 (1990)

    ADS  Google Scholar 

  18. D J Wales and J P K Doye J. Chem. Phys. 119 12409 (2003)

    ADS  Google Scholar 

  19. D J Wales J. Chem. Soc. Faraday Trans. 88 653 (1992)

    Google Scholar 

  20. D J Wales and M P Hodges Chem. Phys. Lett. 286 65 (1998)

    ADS  Google Scholar 

  21. D J Wales and H A Scheraga Science 285 1368 (1999)

    Google Scholar 

  22. P Chaudhury, P Dutta, P Bandyopadhyay, P Sarkar and S P Bhattacharyya Chem. Phys. Lett. 250 238 (1996)

    ADS  Google Scholar 

  23. P Chaudhury and S P Bhattacharyya J. Mol. Struct. (Theochem) 429 175 (1998)

    Google Scholar 

  24. R H Mirdha and P Chaudhury J. Math. Chem. 55 1916 (2017)

    Google Scholar 

  25. S Talukder, S Sen, S Sharma, S K Banik and P Chaudhury Chem. Phys. 431-432 5 (2014)

    Google Scholar 

  26. S K Biring and P Chaudhury Chem. Phys.  400 198 (2012)

    Google Scholar 

  27. R H Mirdha, P Naskar and P Chaudhury Struct. Chem. 29 523 (2018)

    Google Scholar 

  28. S Kirkpatrick J. Stat. Phys. 34 975 (1984)

    ADS  MathSciNet  Google Scholar 

  29. S Kirkpatrick, C D Gelatt and M P Vecchi Science 220 671 (1983)

    ADS  MathSciNet  Google Scholar 

  30. S Nandy, P Chaudhury and S P Bhattacharyya J. Chem. Phys. 132 234104 (2010)

    ADS  Google Scholar 

  31. B K Shandilya, S Sen, T Sahoo, S Talukder, P Chaudhury and S Adhikari J. Chem. Phys. 139 034310 (2013)

    ADS  Google Scholar 

  32. M A Mortet, P G Pascutti, P M Bisch and K C Mundim J. Comput. Chem. 19 647 (1998)

    Google Scholar 

  33. M W Deem and J M Newsam J. Am. Chem. Soc.114 7189 (1992)

    Google Scholar 

  34. K Doll, J C Schön and M Jansen Phys. Rev. B 78 144110 (2008)

    ADS  Google Scholar 

  35. M R Lemes, C R Zacharias and A D Pino,Jr. Phys. Rev. B 56 9279 (1997)

    ADS  Google Scholar 

  36. D E Bacelo, R C Binning Jr. and Y Ishikawa J. Phys. Chem. A 103 4631 (1999)

    Google Scholar 

  37. B Hartke and E A Carter Chem. Phys. Lett. 216 324 (1993)

    ADS  Google Scholar 

  38. P N Day, R Pachter, M S Gordon and G N Merrill J. Chem. Phys. 112 2063 (2000)

    ADS  Google Scholar 

  39. D E Goldberg Genetic Algorithm in Search, Optimization and Machine Learning (Reading: Addison Wesley) (1989)

    MATH  Google Scholar 

  40. M Chen, A R Felmy and D A Dixon J. Phys. Chem. A 118 3136 (2014)

    Google Scholar 

  41. D M Deevan and K M Ho Phys. Rev. Lett. 75 288 (1995)

    ADS  Google Scholar 

  42. C Zhang, X Xu, H Wu and Q Zhang Chem. Phys. Lett. 364 213 (2002)

    ADS  Google Scholar 

  43. J A Niesse and H R Mayne J. Chem. Phys. 105 4700 (1996)

    ADS  Google Scholar 

  44. B Hartke J. Phys. Chem. 97 9973 (1993)

    Google Scholar 

  45. C Roberts, R L Johnston and N T Wilson Theor. Chem. Acc. 104 123 (2000)

    Google Scholar 

  46. C Roberts and R L Johnston Phys. Chem. Chem. Phys. 3 5024 (2001)

    Google Scholar 

  47. D J Earl and M W Deem Phys. Chem. Chem. Phys. 7 3910 (2005)

    Google Scholar 

  48. F Wang and K D Jordan J. Chem. Phys. 119 11645 (2003)

    ADS  Google Scholar 

  49. A DeFusco, T Sommerfeld and K D Jordan Chem. Phys. Lett. 455 135 (2008)

    ADS  Google Scholar 

  50. D Gront and A Kolinski J. Phys.: Condens. Matter 19 036225 (2007)

    ADS  Google Scholar 

  51. S Trebst, M Troyer and U H E Hansmann J. Chem. Phys. 124 174903 (2006)

    ADS  Google Scholar 

  52. F Calvo, J P Neirotti, D L Freeman and J D Doll J. Chem. Phys. 112 10350 (2000)

    ADS  Google Scholar 

  53. W Quapp, O Imig and D Heidrich The Reaction Path in Chemistry: Current Approaches and Perspectives, Gradient Extremals and Their Relation to the Minimum Energy Path (Dordrecht: Kluwer Academic Press) (1995)

    Google Scholar 

  54. W Quapp J. Theor. Comput. Chem. 2 385 (2003)

    Google Scholar 

  55. M Hirsch and W Quapp J. Comput. Chem. 23 887 (2002)

    Google Scholar 

  56. P Chaudhury, S P Bhattacharyya and W Quapp Chem. Phys. 253 295 (2000)

    Google Scholar 

  57. M Haertelt, A Fielicke, G Meijer, K Kwapien, M Sierka and J Sauer Phys. Chem. Chem. Phys. 14 2849 (2012)

    Google Scholar 

  58. L Chen, C Xu and X F Zhang J. Mol. Struct.: Theochem 863 55 (2008)

  59. Q Yang, J Sha, L Wang, Y Wang, X Ma, J Wang and D Yang Nanotechnology 15 1004 (2004)

    ADS  Google Scholar 

  60. R Dong, X Chen, J. Chem. Phys. 129 044705 (2008)

    ADS  Google Scholar 

  61. Y Zhang, H S Chen, B X Liu, C R Zhang, J. Chem. Phys. 132 94304 (2010)

    ADS  Google Scholar 

  62. E de la Puente, A Aguado, A Ayuela and J M Lopez Phys. Rev. B 56 7607 (1997)

    ADS  Google Scholar 

  63. S Moukouri and C Noguera Z. Phys. D 24 71 (1992)

    ADS  Google Scholar 

  64. F Calvo Phys. Rev. B 67 161 (2003)

    Google Scholar 

  65. M Wilson J. Phys. Chem. B 101 4917 (1997)

    Google Scholar 

  66. Y Zhang, H S Chen, J. Phys. B: At. Mol. Opt. Phys. 47 025102 (2014)

    ADS  Google Scholar 

  67. S G Neogi and P Chaudhury Struct. Chem. 25 1229 (2014)

    Google Scholar 

  68. L Chen, C Xu, X Zhang, C Cheng and T Zhou Int. J. Quant. Chem. 109 349 (2009)

    ADS  Google Scholar 

  69. L Hong, H Wang, J Cheng, L Tang and J Zhao Comp. Theo. Chem. 980 62 (2012)

    Google Scholar 

  70. J M Recio and R Pandey Phys. Rev. A 47 2075 (1993)

    ADS  Google Scholar 

  71. J M Recio, R Pandey, J. Chem. Phys. 98 4783 (1993)

    ADS  Google Scholar 

  72. X Lü, X Xu, N Wang and Q Zhang Int. J. Quant. Chem. 73 377 (1999)

    Google Scholar 

  73. C Coudray, G Blaise and M J Malliavin Eur. Phys. J. D 11 127 (2000)

    ADS  Google Scholar 

  74. M J Malliavin and C Coudray J. Chem. Phys. 106 2323 (1997)

    ADS  Google Scholar 

  75. S Veliah, R Pandey, Y S Li, J M Newsam and B Vessal Chem. Chem. Phys. Lett. 235 53 (1995)

    ADS  Google Scholar 

  76. M Chen, J. Phys. Chem. A 118 3136 (2014)

    Google Scholar 

  77. T A Halgren and W A Lipscomb Chem. Phys. Lett. 49 225 (1977)

    ADS  Google Scholar 

Download references

Acknowledgements

P.N. sincerely acknowledges Council of Scientific & Industrial Research: Human Resource Development Group, New Delhi, India, for the award of a Senior Research Fellowship [09/028(0938)/2014-EMR-I].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Chaudhury.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirdha, R.H., Naskar, P. & Chaudhury, P. Structural transformation in \((\hbox {MgO})_{{{n}}}\) clusters using a gradient-only strategy and its comparison with a full Hessian-based calculation. Indian J Phys 95, 561–570 (2021). https://doi.org/10.1007/s12648-020-01724-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01724-4

Keywords

PACS Nos.

Navigation