Skip to main content
Log in

Electromagnetic curves of the polarized light wave along the optical fiber in De-Sitter 2-space \({\mathbb{S}}_{1}^{2}\)

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We review the geometric evolution of a linearly polarized light wave coupling into an optical fiber and the rotation of the polarization plane in De-Sitter 2-space. The optical fiber is assumed to be a one-dimensional object imbedded in the De-Sitter 2-space \({\mathbb{S}} _{1}^{2}\) along with the paper. Mathematically, De-Sitter 2-space \({\mathbb{S}}_{1}^{2}\) is described to be a 2-sphere in a Lorentzian space with positive curvature. Thus, in the De-Sitter 2-space, we have demonstrated that the evolution of a linearly polarized light wave is associated with the Berry phase or more commonly known as the geometric phase. The ordinary condition for parallel transportation is defined by the Fermi–Walker parallelism law. We define other Fermi–Walker parallel transportation laws and connect them with the famous Rytov parallel transportation law for an electric field \({\mathcal{E}}\), which is considered as the direction of the state of the linearly polarized light wave traveling through the optical fiber in De-Sitter 2-space. Later, we have defined a special class of magnetic curves called by Lorentzian spherical electromagnetic curves (\({\mathcal{LSEM}}\) curves), which are generated by the electric field \({\mathcal{E}}\) along with the linearly polarized monochromatic light wave propagating in the optical fiber. In this way, not only we are able to define a special class of linearly polarized point particles corresponding to \({\mathcal{LSEM}}\)-curves of the electromagnetic field along with the optical fiber in the De-Sitter 2-space, but we can also calculate, both numerically and analytically, the electromagnetic force, Poynting vector, energy-exchanges rate, optical angular and linear momentum, and optical magnetic torque experienced by the linearly polarizable point particles along with the optical fiber in the De-Sitter 2-space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. M V Berry Proc. Roy. Soc. London A. 392 45 (1984)

    Article  ADS  Google Scholar 

  2. J N Ross Optical and Quantum Electronics. 16(5) 455 (1984)

    Article  Google Scholar 

  3. M Kugler and S Shtrikman Physical Review D. 37(4) 934 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  4. R Dandoloff and W J Zakrzewski Journal of Physics A: Mathematical and General. 22(11) L461 (1989)

    Article  ADS  Google Scholar 

  5. I I Satija and R Balakrishan Physical Letters A. 373(39) 3582 (2009)

    Article  ADS  Google Scholar 

  6. O Yamashita Optics Communications. 285 3740 (2012)

    Article  ADS  Google Scholar 

  7. O Yamashita Optics Communications. 285 3061 (2012)

    Article  ADS  Google Scholar 

  8. A Comte Annals of Phys. 173 185 (1987)

    Article  ADS  Google Scholar 

  9. S L Druta-Romaniuc and M I Munteanu J. Math. Phys. 52 1 (2011)

    Article  Google Scholar 

  10. S L Druta-Romaniuc and M I Munteanu Nonlinear Anal.:Real Word Application. 14 383 (2013)

    Article  Google Scholar 

  11. D I Efimov Siberian Math. J. 46 83 (2005)

    Article  MathSciNet  Google Scholar 

  12. M I Munteanu and A I Nistor J. Geom. Phys. 62 170 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  13. S P Novikov Russian Math. Surveys. 37 1 (1982)

    Article  ADS  Google Scholar 

  14. T Sunada Proc. KAIST Math. Workshop. 93 (1993)

  15. T Körpınar Int J Theor Phys. 54 1762 (2015).

    Article  Google Scholar 

  16. T Adachi Tokyo J. Math. 18 473 (1995)

    Article  MathSciNet  Google Scholar 

  17. T Adachi Proc. Japan Acad. Ser. A: Math Sci. 70 12 (1994)

    Article  MathSciNet  Google Scholar 

  18. J L Cabrerizo, M Fernandez and J S Gomez Acta Math. Hung. 125 191 (2009)

    Article  Google Scholar 

  19. M Barros, J L Cabrerizo, M Fernandez and A Romero Journal of Math. Phys. 48 082904 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  20. J L Cabrerizo Journal of Nonlinear Math. Phys. 20 440 (2013)

    Article  MathSciNet  Google Scholar 

  21. Z Bozkurt, İ Gök, Y Yaylı and F N Ekmekci Journal ofMath. Phys. 55 053501 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  22. T Körpınar and R C Demirkol International Journal of Geometric Methods in Modern Physics. 15(2) 1850020 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  23. T Körpınar and R C Demirkol International Journal of Geometric Methods in Modern Physics. 15(11) 1850184 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  24. H S Abdel Aziz, M K Saad and H A Ali International Journal of Analysis and Applications. 16 193 (2018)

    Google Scholar 

  25. E M Frins and W Dultz Journal of Lightwave Technology 15 (1) 144 (1997)

    Article  ADS  Google Scholar 

  26. R Dandoloff Physics Letter A. 139 (1,2) 19 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  27. G Calvaruso, M I Munteanu and A Perrone Journal of Mathematical Analysis and Applications. 426 423 (2015)

    Article  MathSciNet  Google Scholar 

  28. T Körpınar and R C Demirkol Journal of Modern Optics 66(8) 857–867 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  29. Z Körpinar Thermal Science 22 87 (2018)

    Article  Google Scholar 

  30. T Körpınar and R C Demirkol Revista Mexicana de Física 65 496–502 (2019)

    Article  MathSciNet  Google Scholar 

  31. T Körpınar, R C Demirkol and V Asil Revista Mexicana de Fisica 64 176 (2018)

    Article  Google Scholar 

  32. T Körpınar Indian J Physhttps://doi.org/10.1007/s12648-019-01462-2 (2019)

  33. T Körpınar Zeitschrift für Naturforschung A. 70 477 (2015)

    Article  ADS  Google Scholar 

  34. T Körpınar, RC Demirkol and Z Körpınar The European Physical Journal D 73 203 (2019)

    Article  ADS  Google Scholar 

  35. T Körpınar and Y Ünlütürk Gen. Relativ. Gravit. 47 138 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rıdvan Cem Demirkol.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Körpinar, T., Demirkol, R.C. Electromagnetic curves of the polarized light wave along the optical fiber in De-Sitter 2-space \({\mathbb{S}}_{1}^{2}\). Indian J Phys 95, 147–156 (2021). https://doi.org/10.1007/s12648-019-01674-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01674-6

Keywords

Mathematics Subject Classification

PACS Nos.

Navigation