Piezothermoelasticity in an infinite slab within the dual-phase-lag model

Abstract

The system of equations of the generalized piezothermoelasticity in anisotropic medium with dual-phase-lag model is established. The exact expressions for displacement components, the temperature, stress components, electric potential and electric displacements are given in the physical domain and illustrated graphically. These expressions are calculated numerically for the problem. Comparisons are made with the results predicted by Lord–Shulman theory and dual-phase-lag model. It is shown that the results from both theories are close to each other for thin slabs, while they differ considerably for thick ones. The present results are of interest in studying the thermomechanical response of piezoelectric sheets under different working thermal, mechanical and electrical conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. [1]

    D Y Tzou J. Heat Transf.117 8 (1995)

    Article  Google Scholar 

  2. [2]

    D Y Tzou Int. J. Heat Mass Transf.38 3231 (1995)

    Article  Google Scholar 

  3. [3]

    R Quintanilla and R Racke J. Appl. Math. 66 977 (2006)

    Google Scholar 

  4. [4]

    R Quintanilla J. Non-Equilb. Thermodyn. 27 217 (2002)

    ADS  Google Scholar 

  5. [5]

    R Quintanilla and R Racke Int. J. Heat Mass Transf. 49 1209 (2006)

    Article  Google Scholar 

  6. [6]

    S K Roy Choudhuri J. Therm. Stress.30 231 (2007)

    Article  Google Scholar 

  7. [7]

    B Singh, S Kumari and J Singh Mech. Mech. Eng. 21 105 (2017)

    Google Scholar 

  8. [8]

    M I A Othman, W M Hasona and E E M Eraki Can. J. Phys. 92 149 (2014)

    Article  ADS  Google Scholar 

  9. [9]

    A F Ghaleb Enc. Therm. Stresses (C), Ed. R B Hetnarski, (Springer) p 767 (2014)

  10. [10]

    M S Abou-Dina, A R EL Dhaba, A F Ghaleb and E K Rawy Int. J. Eng. Sci. 119 29 (2017)

    Article  Google Scholar 

  11. [11]

    R D Mindlin in: N I Muskelishvili (Ed.), Mechanics, 70th Birthday Volume, SIAM, Philadelphia, p 282 (1961)

  12. [12]

    R D Mindlin Interactions in Elastic Solids (Wein: Springer) (1979)

    Google Scholar 

  13. [13]

    P F Hou and A Y T Leung J. Intell. Mater. Syst. Struct. 16 1915 (2009)

    Article  ADS  Google Scholar 

  14. [14]

    G M Kulikov and S V Plotnikova J. Intell. Mater. Syst. Struct. 28 435 (2017)

    Article  Google Scholar 

  15. [15]

    W Q Chen J. Appl. Mech. 67 705 (2000)

    Article  ADS  Google Scholar 

  16. [16]

    W Q Chen, C W Lim and H J Ding Eng. Anal. Bound. Elem. 29 524 (2005)

    Article  Google Scholar 

  17. [17]

    M I A Othman, A Khan, R Jahangir and A Jahangir Appl. Math. Model. 65 535 (2019)

    MathSciNet  Article  Google Scholar 

  18. [18]

    M I A Othman and E A A Ahmed J. Therm. Stress.474 (2016)

  19. [19]

    Y Tanigawa and Y Ootao J. Therm. Stress. 30 1003 (2007)

    Article  Google Scholar 

  20. [20]

    A N Abd-Alla and F A Alsheikh Arch. Appl. Mech. 79 843 (2009)

    Article  ADS  Google Scholar 

  21. [21]

    A N Abd-Alla, F A Alsheikh and A Y Al-Hossain Meccanica 47 731 (2012)

    MathSciNet  Article  Google Scholar 

  22. [22]

    B Behjat, M Salehi, A Armin, M Sadighi and M Abbasi Sci. Iran Trans. B 18 986 (2011)

    Article  Google Scholar 

  23. [23]

    J N Sharma and M Kumar J. Eng. Mat. Sci. 7 434 (2000)

    Google Scholar 

  24. [24]

    M Aouadi Int. J. Solids Struct. 43 6347 (2006)

    Article  Google Scholar 

  25. [25]

    H M Youssef and E Bassiouny Comput. Methods Sci. Technol.14 55 (2008)

    Article  Google Scholar 

  26. [26]

    E Bassiouny Appl. Math. Comput. 218 10009 (2012)

    MathSciNet  Google Scholar 

  27. [27]

    M I A Othman, S Y Atwa, W M Hasona and E A A Ahmed Int. J. Innov. Res. Sci. Eng. Technol. (IJIRSET) 4 2292 (2015)

    Google Scholar 

  28. [28]

    M I A Othman and E A A Ahmed Struct. Eng. Mech. 56 649 (2015)

    Article  Google Scholar 

  29. [29]

    K M Liew, Z Z Jordan, C Li and S A Meguid Int. J. Solids Struct. 42 4239 (2005)

    Article  Google Scholar 

  30. [30]

    N Dhanesh and S Kapuria J. Therm. Stress. 41 1577 (2019)

    Article  Google Scholar 

  31. [31]

    M I A Othman and E M Abd -Elaziz J. Therm. Stress. 38 1068 (2015)

    Article  Google Scholar 

  32. [32]

    X J Yang Appl. Math. Lett. 64 193 (2017)

    MathSciNet  Article  Google Scholar 

  33. [33]

    X J Yang and F Gao Therm. Sci. 21 133 (2017)

    Article  Google Scholar 

  34. [34]

    X-J Yang Therm. Sci. 21 S79 (2017)

    Article  Google Scholar 

  35. [35]

    X J Yang, Y Yang, C Cattani and M Zhu Therm. Sci. 21 S129 (2017)

    Article  Google Scholar 

  36. [36]

    R A Yadav, T K Yadav, M K Maurya, D P Yadav and N P Singh Indian J. Phys. 83 1421 (2009)

    Article  ADS  Google Scholar 

  37. [37]

    M I A Othman and E M Abd-Elaziz Indian J. Phys. 93 475 (2019)

    Article  ADS  Google Scholar 

  38. [38]

    M Marin, S Vlase , R Ellahi and M M Bhatti Symmetry 11 863 (2019)

    Article  Google Scholar 

  39. [39]

    M Marin, R Ellahi and A Chirila Carpath. J. Math. 33 219 (2017)

    Google Scholar 

  40. [40]

    A Majeed, A Zeeshan, S Z Alamri and R Ellahi Neural Comput. Appl. 30 1947 (2018)

    Article  Google Scholar 

  41. [41]

    M Akbarzadeh, S Rashidi, N Karimi and R Ellahi Adv. Powder Technol. 29 2243 (2018)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ethar A. A. Ahmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Some important coefficients appearing in the text:

$$\begin{aligned} \delta _{1}&=\frac{C_{11}}{\rho v_{p}^{2}}, \delta _{2} =\frac{C_{23}}{ \rho v_{p}^{2}}, \delta _{3} =\frac{(C_{13}+C_{23})}{\rho v_{p}^{2}}, \\ \delta _{4}&=\frac{(e_{31}+e_{15})}{e_{33}}, \delta _{5} =\frac{C_{33}}{ \rho v_{p}^{2}}, \\ \delta _{6}&=\frac{e_{15}}{e_{33}}, \delta _{7} =-\frac{\beta _{3}}{ \beta _{1}}, \delta _{8} =\frac{(e_{15}+e_{31})}{\rho v_{p}^{2}},\\ \delta _{9}&=\frac{e_{15}}{\rho v_{p}^{2}}, \delta _{10} =\frac{e_{33}}{ \rho v_{p}^{2}}, \\ \delta _{11}&=-\frac{\epsilon _{11}}{e_{33}}, \delta _{12} =-\frac{ \epsilon _{33}}{e_{33}}, \delta _{13} =\frac{P_{3}}{\beta _{1}}, \\ \delta _{14}&=\frac{K_{1}\omega ^{*}}{\rho C_{T}v_{p}^{2}}, \delta _{15}= \frac{K_{3}\omega ^{*}}{\rho C_{T}v_{p}^{2}}, \\ \delta _{16}&=\frac{\beta _{1}^{2}T_{0}}{\rho ^{2}C_{T}v_{p}^{2}}, \delta _{17} =\frac{\beta _{1}\beta _{3}T_{0}}{\rho ^{2}C_{T}v_{p}^{2}}, \delta _{18} =-\frac{P_{3}\beta _{1}T_{0}}{\rho C_{T}e_{33}}. \end{aligned}$$

and

$$\begin{aligned} A_{1}&=\frac{a^{2}c^{2}-a^{2}\delta _{1}}{\delta _{2}}, A_{2} =\frac{ ia\delta _{3}}{\delta _{2}}, A_{3} =\frac{ia\delta _{4}}{\delta _{2}}, A_{4} =\frac{-ia}{\delta _{2}}, \\ A_{5}&=\frac{ia\delta _{3}}{\delta _{5}}, A_{6} =\frac{ a^{2}c^{2}-a^{2}\delta _{2}}{\delta _{5}}, A_{7}=\frac{1}{\delta _{5}}, A_{8} =-\frac{a^{2}\delta _{6}}{\delta _{5}}, \\ A_{9}&=\frac{\delta _{7}}{\delta _{5}}, A_{10} =\frac{ia\delta _{8}}{ \delta _{10}}, A_{11} =-\frac{a^{2}\delta _{9}}{\delta _{10}}, A_{12} = \frac{\delta _{12}}{\delta _{10}}, \\ A_{13}&=-\frac{a^{2}\delta _{11}}{\delta _{10}}, A_{14} =\frac{\delta _{13}}{\delta _{10}}, A_{15} =-\frac{a^{2}c\delta _{16}(1-iac\tau _{q})}{ \delta _{15}(1-iac\tau _{\theta })},\\ A_{16}&=\frac{iac\delta _{17}(1-iac\tau _{q})}{\delta _{15}(1-iac\tau _{\theta })}, \\ A_{17}&=\frac{iac\delta _{18}(1-iac\tau _{q})}{\delta _{15}(1-iac\tau _{\theta })},\\ A_{18}&=\frac{-a^{2}\delta _{14}(1-iac\tau _{\theta })+iac(1-iac\tau _{q})}{\delta _{15}(1-iac\tau _{\theta })}.\\ A&=\frac{-1}{A_{12}-A_{7}}A_{13}-A_{8}-A_{1}A_{7}\\&\quad +A_{3}A_{5}+A_{1}A_{12}-A_{3}A_{10}+A_{6}A_{12}-A_{7}A_{11}+A_{7}A_{18}\\&\quad +A_{9}A_{17}+A_{12}A_{18}-A_{14}A_{17}-A_{2}A_{5}A_{12}\\&\quad +A_{2}A_{7}A_{10}+A_{7}A_{14}A_{16}-A_{9}A_{12}A_{16},\\ B&=\frac{1}{(A_{12}-A_{7})}(-A_{1}A_{8}+A_{1}A_{13}+A_{6}A_{13}\\&\quad -A_{8}A_{11}-A_{8}A_{18}+A_{13}A_{18}+A_{1}A_{6}A_{12}-A_{1}A_{7}A_{11}\\&\quad +A_{3}A_{5}A_{18}-A_{4}A_{5}A_{17}+A_{4}A_{7}A_{15}+A_{1}A_{9}A_{17}\\&\quad -A_{3}A_{9}A_{15} +A_{1}A_{12}A_{18}-A_{3}A_{10}A_{18}+A_{4}A_{10}A_{17}\\&\quad -A_{4}A_{12}A_{15}-A_{1}A_{14}A_{17}+A_{3}A_{14}A_{15}\\&\quad +A_{6}A_{12}A_{18}-A_{7}A_{11}A_{18}-A_{6}A_{14}A_{17}+A_{9}A_{11}A_{17}\\&\quad +A_{8}A_{14}A_{16}-A_{9}A_{13}A_{16}-A_{2}A_{5}A_{12}A_{18}\\&\quad +A_{2}A_{7}A_{10}A_{18}+A_{4}A_{5}A_{12}A_{16}-A_{4}A_{7}A_{10}A_{16}\\&\quad +A_{1}A_{7}A_{14}A_{16}-A_{1}A_{9}A_{12}A_{16}+A_{2}A_{5}A_{14}A_{17}\\&\quad -A_{2}A_{7}A_{14}A_{15}-A_{2}A_{9}A_{10}A_{17}+A_{2}A_{9}A_{12}A_{15}\\&\quad -A_{3}A_{5}A_{14}A_{16}+A_{3}A_{9}A_{10}A_{16}), \\ C&=\frac{-1}{(A_{12}-A_{7})} (A_{1}A_{6}A_{13}-A_{1}A_{8}A_{11}-A_{1}A_{8}A_{18}\\&\quad +A_{4}A_{8}A_{15}+A_{1}A_{13}A_{18}-A_{4}A_{13}A_{15}+A_{6}A_{13}A_{18}\\&\quad -A_{8}A_{11}A_{18}+A_{1}A_{6}A_{12}A_{18}-A_{1}A_{7}A_{11}A_{18}\\&\quad +A_{3}A_{5}A_{11}A_{18}-A_{3}A_{6}A_{10}A_{18}-A_{4}A_{5}A_{11}A_{17}\\&\quad +A_{4}A_{6}A_{10}A_{17}-A_{4}A_{6}A_{12}A_{15}+A_{4}A_{7}A_{11}A_{15}\\&\quad -A_{1}A_{6}A_{14}A_{17}+A_{1}A_{9}A_{11}A_{17}-A_{2}A_{5}A_{13}A_{18}\\&\quad +A_{2}A_{8}A_{10}A_{18}+A_{3}A_{6}A_{14}A_{15}-A_{3}A_{9}A_{11}A_{15}\\&\quad +A_{4}A_{5}A_{13}A_{16}-A_{4}A_{8}A_{10}A_{16}+A_{1}A_{8}A_{14}A_{16}\\&\quad -A_{1}A_{9}A_{13}A_{16}-A_{2}A_{8}A_{14}A_{15}+A_{2}A_{9}A_{13}A_{15}),\\ E&=\frac{1}{(A_{12}-A_{7})} (A_{1}A_{6}A_{13}A_{18}-A_{1}A_{8}A_{11}A_{18}\\&\quad -A_{4}A_{6}A_{13}A_{15}+A_{4}A_{8}A_{11}A_{15}). \end{aligned}$$

Appendix 2

Some important coefficients appearing in the text for \(n=1,2,3,4\):

$$\begin{aligned} H_{1n}&=-\frac{s_{1n}}{s_{2n}},H_{2n} =-\frac{q_{1n}+q_{2n}H_{1n}}{q_{3n}},\\ H_{3n}&=-\frac{(k_{n}^{2}+A_{1})+(-A_{2}k_{n}+A_{3})H_{1n}-A_{4}k_{n}H_{2n}}{A_{4}},\\ H_{4n}&=[r_{1}-l_{1}k_{n}H_{1n}-l_{2}k_{n}H_{2n}-H_{3n}],\\ H_{5n}&=[r_{2}-\delta _{5}k_{n}H_{1n}-k_{n}H_{2n}+\delta _{7}H_{3n}],\\ H_{6n}&=[-\delta _{2}k_{n}+r_{3}H_{1n}+r_{4}H_{2n}],\\ H_{7n}&=[-l_{3}k_{n}+r_{5}H_{1n}+r_{6}H_{2n}],\\ H_{8n}&=[r_{7}-l_{6}k_{n}H_{1n}-l_{7}k_{n}H_{2n}+l_{8}H_{3n}].\\ G_{1n}&=-\frac{y_{1n}}{y_{2n}},G_{2n} =-\frac{z_{4n}+z_{5n}G_{1n}}{z_{6n}},\\ G_{3n}&=-\frac{(k_{n}^{2}+A_{1})+A_{2}k_{n}G_{1n}+A_{3}k_{n}G_{2n}}{A_{4}},\\ G_{4n}&=[r_{1}+l_{1}k_{n}G_{1n}+l_{2}k_{n}G_{2n}+G_{3n}],\\ G_{5n}&=[r_{2}+\delta _{5}k_{n}G_{1n}+k_{n}G_{2n}+\delta _{7}G_{3n}],\\ G_{6n}&=[\delta _{2}k_{n}+r_{3}G_{1n}+r_{4}G_{2n}],\\ G_{7n}&=[l_{3}k_{n}+r_{5}G_{1n}+r_{6}G_{2n}],\\ G_{8n}&=[r_{7}+l_{6}k_{n}G_{1n}+l_{7}k_{n}G_{2n}+l_{8}G_{3n}].\\ q_{1n}&=A_{9}k_{n}^{3}+(A_{1}A_{9}-A_{4}A_{5})k_{n},\\ q_{2n}&=(-A_{2}A_{9}+A_{4})k_{n}^{2}+A_{4}A_{6},\\ q_{3n}&=(A_{4}A_{7}-A_{3}A_{9})k_{n}^{2}+A_{4}A_{8}, \\ q_{4n}&=A_{14}k_{n}^{3}+(A_{1}A_{14}-A_{4}A_{10})k_{n},\\ q_{5n}&=(A_{4}-A_{2}A_{14})k_{n}^{2}+A_{4}A_{11},\\ q_{6n}&=(A_{4}A_{12}-A_{3}A_{14})k_{n}^{2}+A_{4}A_{13}.\\ s_{1n}&=q_{1n}q_{6n}-q_{3n}q_{4n}, s_{2n} =q_{2n}q_{6n}-q_{3n}q_{5n}.\\ z_{1n}&=-A_{9}k_{n}^{3}+(A_{1}A_{9}-A_{4}A_{5})k_{n},\\ z_{2n}&=(-A_{2}A_{9}+A_{4})k_{n}^{2}+A_{4}A_{6},\\ z_{3n}&=(A_{4}A_{7}-A_{3}A_{9})k_{n}^{2}+A_{4}A_{8},\\ z_{4n}&=-A_{14}k_{n}^{3}-(A_{1}A_{14}-A_{4}A_{10})k_{n},\\ z_{5n}&=(A_{4}-A_{2}A_{14})k_{n}^{2}+A_{4}A_{11},\\ z_{6n}&=(A_{4}A_{12}-A_{3}A_{14})k_{n}^{2}+A_{4}A_{13}.\\ y_{1n}&=z_{1n}z_{6n}-z_{3n}z_{4n}, y_{2n} =z_{2n}z_{6n}-z_{3n}z_{5n},\\ l_{1}&=\frac{C_{13}}{\rho v_{p}^{2}}, l_{2} =\frac{e_{31}}{e_{33}},\\ l_{3}&=\frac{e_{15}\beta _{1}T_{0}}{e\rho v_{p}^{2}}, l_{4} =-\frac{\epsilon _{11}\beta _{1}T_{0}}{ee_{33}},\\ l_{5}&=\frac{e_{31}\beta _{1}T_{0}}{e\rho v_{p}^{2}}, l_{6} =\frac{e_{33}\beta _{1}T_{0}}{e\rho v_{p}^{2}},\\ l_{7}&=-\frac{\epsilon _{33}\beta _{1}T_{0}}{ee_{33}}, l_{8}=\frac{P_{3}T_{0}}{e}.\\ \{r_{1},r_{2},r_{3},r_{4},r_{5},r_{6},r_{7}\}&=ia\{\delta _{1},l_{1},\delta _{2},\delta _{6},l_{3},l_{4},l_{5}\}. \end{aligned}$$

Appendix 3

$$\begin{aligned}&\sum _{n=1}^{4}H_{5n}M_{n}\sum _{n=1}^{4}G_{5n}R_{n}=-f_{1}^{*}, \\&\sum _{n=1}^{4}H_{6n}M_{n}+\sum _{n=1}^{4}G_{6n}R_{n}=0, \\&\sum _{n=1}^{4}H_{3n}M_{n}+\sum _{n=1}^{4}G_{3n}R_{n}=f_{2}^{*}, \\&\sum _{n=1}^{4}k_{n}H_{2n}M_{n}\sum _{n=1}^{4}G_{2n}R_{n}=0 \\&\sum _{n=1}^{4}M_{n}{\mathrm{e}}^{-k_{n}l}+\sum _{n=1}^{4}R_{n}{\mathrm{e}}^{k_{n}l}\overset{}{=}0,\\&\sum _{n=1}^{4}H_{1n}M_{n}{\mathrm{e}}^{-k_{n}l}+\sum _{n=1}^{4}G_{1n}R_{n}{\mathrm{e}}^{k_{n}l}\overset{}{=}0, \\&\sum _{n=1}^{4}H_{2n}M_{n}{\mathrm{e}}^{-k_{n}l}+\sum _{n=1}^{4}G_{2n}R_{n}{\mathrm{e}}^{k_{n}l}\overset{}{=}0, \\&\sum _{n=1}^{4}H_{3n}M_{n}{\mathrm{e}}^{-k_{n}l}+\sum _{n=1}^{4}G_{3n}R_{n}{\mathrm{e}}^{k_{n}l}\overset{}{=}f_{3}^{*}. \end{aligned}$$

This system is cast in the following matricial form:

$$\begin{aligned} {\mathbf {M}}=\left( \begin{array}{cccccccc} M_{1},&M_{2},&M_{3},&M_{4},&R_{1},&R_{2},&R_{3},&R_{4} \end{array} \right) ^\mathrm{T}, \end{aligned}$$

where the superscript T is used here after to denote the transpose of the superscripted matrix and A is the matrix of coefficients given as

$$\begin{aligned} {\mathbf {A}}=\left( \begin{array}{cccccccc} H_{51} &{} H_{61} &{} H_{31} &{} -k_{1}H_{21} &{} {\mathrm{e}}^{-k_{1}l} &{} {H}_{11} {e}^{-k_{1}l} &{} k_{1}H_{21}{\mathrm{e}}^{-k_{1}l} &{} H_{31}{\mathrm{e}}^{-k_{1}l} \\ H_{52} &{} H_{62} &{} H_{32} &{} -k_{2}H_{22} &{} {\mathrm{e}}^{-k_{2}l} &{} H_{12}{\mathrm{e}}^{-k_{2}l} &{} -k_{2}H_{22}{\mathrm{e}}^{-k_{2}l} &{} H_{32}{\mathrm{e}}^{-k_{2}l} \\ H_{53} &{} H_{63} &{} H_{33} &{} -k_{3}H_{23} &{} {\mathrm{e}}^{-k_{3}l} &{} H_{13}{\mathrm{e}}^{-k_{3}l} &{} -k_{3}H_{23}{\mathrm{e}}^{-k_{3}l} &{} H_{33}{\mathrm{e}}^{-k_{3}l} \\ H_{54} &{} H_{64} &{} H_{34} &{} -k_{4}H_{24} &{} {\mathrm{e}}^{-k_{4}l} &{} H_{14}{\mathrm{e}}^{-k_{4}l} &{} -k_{4}H_{24}{\mathrm{e}}^{-k_{4}l} &{} H_{34}{\mathrm{e}}^{-k_{4}l} \\ G_{51} &{} G_{61} &{} G_{31} &{} k_{1}G_{21} &{} {\mathrm{e}}^{k_{1}l} &{} G_{11}{\mathrm{e}}^{k_{1}l} &{} k_{1}H_{21}{\mathrm{e}}^{k_{1}l} &{} G_{31}{\mathrm{e}}^{k_{1}l} \\ G_{52} &{} G_{62} &{} G_{32} &{} k_{2}G_{22} &{} {\mathrm{e}}^{k_{2}l} &{} G_{12}{\mathrm{e}}^{k_{2}l} &{} k_{2}H_{22}{\mathrm{e}}^{k_{2}l} &{} G_{32}{\mathrm{e}}^{k_{2}l} \\ G_{53} &{} G_{63} &{} G_{33} &{} k_{3}G_{23} &{} {\mathrm{e}}^{k_{3}l} &{} G_{13}{\mathrm{e}}^{k_{3}l} &{} k_{3}H_{23}{\mathrm{e}}^{k_{3}l} &{} G_{33}{\mathrm{e}}^{k_{3}l} \\ G_{54} &{} G_{64} &{} G_{34} &{} k_{4}G_{24} &{} {\mathrm{e}}^{k_{4}l} &{} G_{14}{\mathrm{e}}^{k_{4}l} &{} k_{4}H_{24}{\mathrm{e}}^{k_{4}l} &{} G_{34}{\mathrm{e}}^{k_{4}l} \end{array} \right) ^\mathrm{T} \end{aligned}$$

and F is the following vector of constants

$$\begin{aligned} {\mathbf {F}}=\left( \begin{array}{cccccccc} -f_{1}^{*},&0,&f_{2}^{*},&0,&0,&0,&0,&f_{2}^{*} \end{array} \right) ^\mathrm{T}, \end{aligned}$$

The solution of this system of equations takes the form:

$$\begin{aligned} {\mathbf {M}}={\mathbf{A}}^{-1}{\mathbf {F}} \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmed, E.A.A., Abou-Dina, M.S. Piezothermoelasticity in an infinite slab within the dual-phase-lag model. Indian J Phys 94, 1917–1929 (2020). https://doi.org/10.1007/s12648-019-01655-9

Download citation

Keywords

  • Piezothermoelasticity
  • Dual-phase-lag model
  • Normal modes method
  • An infinite slab
  • Generalized thermoelasticity

PACS Nos.

  • 44.05.+e
  • 77.65.-j
  • 65.40.De
  • 81.40.Jj
  • 62.20.Dc
  • 65.40.De