Optimization of MDM-FSO system with different encoding schemes

Abstract

Free space optical transmission has a wide area of applications in the field of digital services. It has special features such as low maintenance cost, licence-free and less deployment time. It is a solution to replace optical fiber cable for providing services in rural area. In this paper, the performance of the two independent channels LP01 and LP11 by mode-division multiplexing over free space optical (FSO) link is investigated. Each channel carries data at 10 Gbps data rate, and the data are transmitted over 8 km FSO link with NRZ/RZ encoding schemes. The performance of the MDM-FSO system is evaluated under atmospheric turbulences which gives better results in RZ encoding scheme as compared to NRZ scheme at acceptable level of SNR and BER.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. [1]

    S Chaudhary, A Amphawan J. Opt. Commun. 35 327 (2014).

    Article  Google Scholar 

  2. [2]

    F Khan, A ur Rehman, M Arif, M Aftab, B K Jadoon Paper Presented at the Computing, Electronic and Electrical Engineering (ICE Cube 2016) International Conference (2016)

  3. [3]

    M A Khalighi, M Uysal IEEE Commun. Surv. Tutor. 16, 2231 (2014)

    Article  Google Scholar 

  4. [4]

    L C Sinclair, F R Giorgetta, W C Swann, E Baumann, I Coddington, N R Newbury Propagation Through and Characterization of Distributed Volume Turbulence, Optical Society of America (2013)

  5. [5]

    A Basahel, I M Rafiqul, A Z Suriza, M H Habaebi Opt. Int. J. Light Electron Opt. 127 10316 (2016)

    Article  Google Scholar 

  6. [6]

    M A Esmail, H Fathallah, M S Alouini IEEE Photonics J. 8 1 (2016)

    Article  Google Scholar 

  7. [7]

    M. Tavakoli, M. Mansouri, S. S. Khatami, F. Jahantigh Indian J. Phys. (2019). https://doi.org/10.1007/s12648-019-01435-5

    Article  Google Scholar 

  8. [8]

    A. Amphawan and S. Chaudhary Int. Conf. Opt. Photonic Eng. 6 95242H (2015)

    Google Scholar 

  9. [9]

    I. M. Fazal et al. Opt. Lett. 37 4753 (2012)

    ADS  Article  Google Scholar 

  10. [10]

    H. Huang et al. Optical Fiber Communication Conference Optical Society of America (2013)

  11. [11]

    H. Huang et al, Opt. Lett. 39, 197 (2014)

    ADS  Article  Google Scholar 

  12. [12]

    Y. Ren et al. Opt. Lett. 38 4062 (2013)

    ADS  Article  Google Scholar 

  13. [13]

    J Carpenter, T D Wilkinson J. Lightwave Technol. 30 1978 (2012)

    ADS  Article  Google Scholar 

  14. [14]

    S O Arik, J M Kahn, K P Ho IEEE Signal Process. Mag. 31 25 (2014)

    ADS  Article  Google Scholar 

  15. [15]

    R Ryf, S Randel, A H Gnauck, C Bolle, R J Essiambre et al. Optical Fiber Communication Conference, 10 (2011)

  16. [16]

    Y Jung, R Chen, R Ismaeel, G Brambilla, et al. Opt. Express 21 24326 (2013)

    ADS  Article  Google Scholar 

  17. [17]

    C P Tsekrekos, D Syvridis IEEE Photonics Technol. Lett. 24 1638 (2012)

    ADS  Article  Google Scholar 

  18. [18]

    M S Kovacevic, K K Y Wong, K Oh Indian J. Phys. 91 1609 (2017)

    ADS  Article  Google Scholar 

  19. [19]

    T Kaiser, D, Flamm, S Schröter, M Duparré Opt. Express 17 9347 (2009)

    ADS  Article  Google Scholar 

  20. [20]

    Y Ren, H Huang, G Xies, N Ahmed, et al. Opt. Lett. 38 4062 (2013)

    ADS  Article  Google Scholar 

  21. [21]

    H Huang, G Xie, Y Yan, N Ahmed, et al. Opt. Lett. 39 197 (2014)

    ADS  Article  Google Scholar 

  22. [22]

    Y Ren, Z Wang, P Liao, et al. Opt. Lett. 41 622 (2016)

    ADS  Article  Google Scholar 

  23. [23]

    Y Zhao, J Liu, J Du, S Li, et al Opt. Fiber Commun. Conf. 3 (2016)

  24. [24]

    H Sarangal, A Singh, J Malhotra, S Chaudhary Opt. Quantum Electron. 49 184 (2017)

    Article  Google Scholar 

  25. [25]

    S Chaudhary and A Amphawan Int. J. Electron. Lett. 1 (2018)

  26. [26]

    S Chaudhary et al. Opt. Quantum Electron. 8 321 (2018)

    Article  Google Scholar 

  27. [27]

    S Chaudhary, X Tang and X Wei AEU-Int. J. Electron. Commun. 93 208 (2018)

    Article  Google Scholar 

  28. [28]

    K Okamoto San Diego: Academic Press (2000)

  29. [29]

    C Tsao Oxford University Press Part III (1992)

  30. [30]

    E J MacCartney Wiley, Hoboken (1976)

  31. [31]

    L. C. Andrews, and R. L. Phillips, Laser Beam Propagation Through Random Media 2nd edition, (Bellingham: SPIE Press Book) (2005)

    Book  Google Scholar 

  32. [32]

    M. Born and E. Wolf Principles of Optics 6th ed., Pergamon Press Canada Ltd., Ontario (1980)

    MATH  Google Scholar 

  33. [33]

    J. W. Goodman, Statistical Optics (New York: Wiley) (1985)

    Google Scholar 

  34. [34]

    I I Kim, B McArthur, E J Korevaar Inf. Technol. 2000 26 (2001)

    Google Scholar 

  35. [35]

    A K Majumdar (2005) J. Opt. Fiber Commun. 2 345

    Article  Google Scholar 

  36. [36]

    G.P. Agrawal Fiber Optic Communication Systems (New York: Wiley) (1997)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Saumya Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Srivastava, S., Upadhyay, K.K. & Singh, N. Optimization of MDM-FSO system with different encoding schemes. Indian J Phys 94, 1803–1809 (2020). https://doi.org/10.1007/s12648-019-01632-2

Download citation

Keywords

  • Free space optics (FSO)
  • Mode-division multiplexing (MDM)
  • Linear polarization (LP)
  • Signal-to-noise ratio (SNR)

PACS Nos.

  • 42.30Lr
  • 42.50p
  • 42.64K
  • 42.79Sz
  • 42.82i