First-principles calculations to investigate structural and thermodynamic properties of Ni2LaZ (Z = As, Sb and Bi) Heusler alloys


Structural, electronic, elastic and thermodynamic properties of Ni2LaZ (Z = As, Sb and Bi) Heusler alloys based on rare earth element have been investigated using full-potential linear muffin-tin orbital (FP-LMTO) method within generalized gradient approximation (GGA) in the frame of density functional theory (DFT). By using total energy variations, the independent elastic constants and their pressure dependence have been determined. Also, anisotropic parameter (A), shear modulus (G), Young modulus (E), Poisson’s ratio (ν), ratio (B/G) are calculated. Using quasi-harmonic Debye model, thermodynamic properties of Ni2LaZ (Z = As, Sb and Bi) Heusler alloys are investigated in temperature range 0–1200 K and pressure range 0–50 GPa. The temperature and pressure effects on the unit cell volume, bulk modulus (B), heat capacities (Cv) at stable volume, (Cp), Debye temperatures (θD), Gibbs energies (G), thermal expansion coefficients (α) and entropies (S) are determined from non-equilibrium Gibbs functions. This study allows to understand deeply the structural and thermodynamic properties of Ni2LaZ (Z = As, Sb and Bi) Heusler alloys in shortest time and cost-effective.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. [1]

    F Heusler (1903) Verhandlungen der DeutschenPhysikalischen Gesellschaft 5 219

    Google Scholar 

  2. [2]

    H H Potter Proc. Phys. Soc. 41 135 (1929)

    ADS  Article  Google Scholar 

  3. [3]

    A J Bradley and J W Rodgers Proc. R. Soc. A 144 340 (1934)

    ADS  Google Scholar 

  4. [4]

    S Ishida, Y Kubo, J Ishida and S Asano J. Phys. Soc. Jpn. 48 814 (1980)

    ADS  Article  Google Scholar 

  5. [5]

    S Ishida, J Ishida, S Asano and J Yamashita J. Phys. Soc. Jpn. 45 1239 (1978)

    ADS  Article  Google Scholar 

  6. [6]

    J Kuebler, A R Williams and C B Sommers Phys. Rev. B 28 1745 (1983)

    ADS  Article  Google Scholar 

  7. [7]

    R A de Groot, F M Mueller, P G van Engen and K H J Buschow Phys. Rev. Lett. 50 2024 (1983)

    ADS  Article  Google Scholar 

  8. [8]

    S Savrasov and D Savrasov Phys. Rev. B 46 12181 (1992)

    ADS  Article  Google Scholar 

  9. [9]

    S Y Savrasov Phys. Rev. B 54 16470 (1996)

    ADS  Article  Google Scholar 

  10. [10]

    S Y Savrasov Zeitschrift für Kristallographie 220 555 (2005)

    ADS  Google Scholar 

  11. [11]

    J P Perdew and Y Wang Phys. Rev. B 46 12947 (1992)

    ADS  Article  Google Scholar 

  12. [12]

    P E Blöchl, O Jepsen and O K Andersen Phys. Rev. B 49 16223 (1994)

    ADS  Article  Google Scholar 

  13. [13]

    M Belkhouane et al J. Magn. Magn. Mater. 377 211 (2015)

    ADS  Article  Google Scholar 

  14. [14]

    F Dahmaneet et al J. Magn. Magn. Mater. 407 167 (2016)

    ADS  Article  Google Scholar 

  15. [15]

    F D Murnaghan Proc. Natl. Acad. Sci. 30 5390 (1944)

    Google Scholar 

  16. [16]

    E Schreiber, OL Anderson and N Soga Elastic Constants and their Measurement (New York: McGraw-Hill) (1973)

    Google Scholar 

  17. [17]

    M J Mehl Phys. Rev. B 47 2493 (1993)

    ADS  Article  Google Scholar 

  18. [18]

    T Lantri, S Bentata and B Bouadjemi J. Magn. Magn. Mater. 419 74 (2016)

    ADS  Article  Google Scholar 

  19. [19]

    A Akriche et al J. Magn. Magn. Mater. 422 13 (2017)

    ADS  Article  Google Scholar 

  20. [20]

    A Abada and K Amara J. Magn. Magn. Mater. 388 59 (2015)

    ADS  Article  Google Scholar 

  21. [21]

    F Khelfaoui, M Ameri, D Bensaid, I Ameri and Y Al-Douri J. Supercond. Novel Magn. 31 3183 (2018)

    Article  Google Scholar 

  22. [22]

    Y Nakanishi et al J. Phys. Soc. Jpn. 71 249 (2002)

    Article  Google Scholar 

  23. [23]

    M Born and K Huang Dynamical Theory of Crystal Lattices (Clarendon: Oxford) (1956)

    MATH  Google Scholar 

  24. [24]

    B Mayer, H Anton and E Bott et al Intermetallics 11 23 (2003)

    Article  Google Scholar 

  25. [25]

    H Fu, D Li, F Peng, T Gao and X Cheng Comput. Mater. Sci. 44 774 (2008)

    Article  Google Scholar 

  26. [26]

    C H Jenkins and S K Khanna Mech. Mater. 12 62 (2005)

    Google Scholar 

  27. [27]

    X H Hou, X J Xu, J M Meng, Y B Ma and Z C Deng Compos. Part B Eng. 162 411 (2019)

    Article  Google Scholar 

  28. [28]

    S F Pugh Lond. Edinb. Dublin Philos. Mag. J. Sci. 45 823 (1954)

    Article  Google Scholar 

  29. [29]

    M A Blanco, E Francisco and V Luaña Comput. Phys. Commun. 158 57 (2004)

    ADS  Article  Google Scholar 

  30. [30]

    M A Blanco, A Martin Pendas, E Francisco, JM Recio and R Franco J. Mol. Struct. 368 245 (1996)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Y. Al-Douri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moussali, A., Amina, M.B., Fassi, B. et al. First-principles calculations to investigate structural and thermodynamic properties of Ni2LaZ (Z = As, Sb and Bi) Heusler alloys. Indian J Phys 94, 1733–1747 (2020).

Download citation


  • Heusler alloys
  • GGA
  • Structural
  • Thermodynamic


  • 31.15.E
  • 61.66.Dk
  • 71.15.Mb
  • 03.75.Hh
  • 67.40.Kh