Dyonic solutions of Maxwell field equations in arbitrary media

Abstract

In this paper, we report the reformulation of Maxwell equations for dyon in arbitrary media and it’s role in order to obtain the three set of solutions in terms of charge density \(\rho\), current density J, polarization P, and magnetization M. Present study determines the electric field E, electric displacement vector D, magnetic induction vector H, and magnetic field B as integrals of retarded charge density \(\rho\), current density J, polarization P and magnetization M, and their retarded spatial and temporal derivatives.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    P A M Dirac Phys. Rev. 74 8179 (1948)

    Article  Google Scholar 

  2. [2]

    P A M Dirac Proc. Roy. Soc. (London) A133 60 (1931)

    ADS  Google Scholar 

  3. [3]

    J Schwinger Phys. Rev. 144 1087 (1966)

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    D Zwanziger Phys. Rev. 176 1489 (1968)

    ADS  Article  Google Scholar 

  5. [5]

    W V R Malkus Phys. Rev. 83 899 (1951)

    ADS  Article  Google Scholar 

  6. [6]

    E Goto, H M Kolm and K W Ford Phys. Rev. 132 387 (1963)

    ADS  Article  Google Scholar 

  7. [7]

    L D Faddeev Methods in field theory: FRONT MATTER Les Houches lecture, session 20, North Holland (1976)

  8. [8]

    S Coleman The uses of instantons Lectures delivered at the Int. school of Subnuclear Phys (1975)

  9. [9]

    D Zwanziger Phys. Rev. 137 647 (1965)

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    N Cabibbo and E Ferrari Nuovo Cim 23 1147 (1962)

    ADS  Article  Google Scholar 

  11. [11]

    G Hooft Nucl. Phys. B 138 1 (1978)

    ADS  Article  Google Scholar 

  12. [12]

    A M Polyakov JETP Lett. 20 194 (1974)

    ADS  Google Scholar 

  13. [13]

    B Julia and A Zee Phys. Rev. D 11 2227 (1975)

    ADS  Article  Google Scholar 

  14. [14]

    C Dokos and T Tomaros Phys. Rev. D 21 2940 (1980)

    ADS  Article  Google Scholar 

  15. [15]

    J Prekill Annu. Rev. Nucl. Part. Sci. 34 461 (1984)

    ADS  Article  Google Scholar 

  16. [16]

    C G Callen Phys. Rev. D 25 2141 (1982)

    ADS  Article  Google Scholar 

  17. [17]

    V A Rubakov Nucl. Phys. B 203 211 (1982)

    Article  Google Scholar 

  18. [18]

    S Mandelstam Phys. Rev. D 19 249 (1976)

    Google Scholar 

  19. [19]

    G Hooft Nucl. Phys. B 136 1 (1978)

    Article  Google Scholar 

  20. [20]

    B S Rajput J. Math. Phys. 25 351 (1984)

    ADS  Article  Google Scholar 

  21. [21]

    B S Rajput and R Gunwant Ind. J. Pure Appl. Phys. 26 538 (1988)

    Google Scholar 

  22. [22]

    E Witten Phys. Lett. B 86 283 (1979)

    ADS  Article  Google Scholar 

  23. [23]

    D J Griffiths and M A Heald Am. J. Phys. 59 111 (1991)

    ADS  Article  Google Scholar 

  24. [24]

    O D Jefimenko Am. J. Phys. 59 262506 (1992)

    Google Scholar 

  25. [25]

    M Javid and P M Brown Field Analysis and Electromagnetics (New York: McGraw-Hill) p 63 (1963)

    Google Scholar 

  26. [26]

    D J Griffiths Introduction of Electrodynamics (Englewood Cliffs, Englewood Cliffs, NJ: Prentice Hall) Vol 2, p 165 (1989)

    Google Scholar 

  27. [27]

    O D Jefimenko Am. J. Phys. 40 545 (1983)

    ADS  Article  Google Scholar 

  28. [28]

    B Carrascal, G A Estevez and V Lorenzo Am. J. Phys. 59 233 (1991)

    ADS  Article  Google Scholar 

  29. [29]

    J D Jackson Classical Electrodynamics (Singapore: John Wiley) Vol 3 (1999)

    MATH  Google Scholar 

  30. [30]

    P Feynman and A R Hibbs Quantum Mechanics and Path Integrals (New York: Mc Graw-Hill) (1965)

    MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the reviewers for valuable comments that helped us to improve this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ila Joshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Joshi, I., Garia, J.S. Dyonic solutions of Maxwell field equations in arbitrary media. Indian J Phys 94, 1821–1828 (2020). https://doi.org/10.1007/s12648-019-01623-3

Download citation

Keywords

  • Dyon
  • Monopole
  • Polarization
  • Magnetization

PACS Nos.

  • 14.80Hv