Advertisement

Crystal structure prediction of ReN2 under high pressure

  • H. Y. Wang
  • P. Yan
  • L. XuEmail author
  • D. W. Zhou
  • D. Li
Short Research Communication
  • 40 Downloads

Abstract

Three ReN2 phases (Pbcn, C2/m and P4/mbm) are searched to be stable under different pressures by the swarm-intelligence-based CALYPSO method. Pressure-induced phase transitions from Pbcn phase to C2/m phase at 68.5 GPa and C2/m phase to P4/mbm phase at 138.8 GPa are firstly observed. The calculated results of density of state show all the three phases are metallic conductor. And elastic constant calculations confirm their mechanical stabilities. The high bulk and shear moduli of C2/m and P4/mbm phases indicate their high hardness. The total and partial electron densities of states and electron localization functions indicate that the covalent bonding of Re–N in ReN2 makes great contributions to the structural stability and high hardness.

Keywords

ReN2 Phase transition High pressure Structural properties 

PACS Nos

62.50.+p 64.70.Kb 03.75.Hh 

Notes

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant Nos. 11404099 and 51571086) and Henan Joint International Research Laboratory for High Performance Metallic Material and Their Numerical Simulation.

References

  1. [1]
    C M Sung and M Sung Mater. Chem. Phys.43 1 (1996)ADSCrossRefGoogle Scholar
  2. [2]
    J Haines, J M Leger and G Bocquillon Annu. Rev. Mater. Res.31 1 (2001)ADSCrossRefGoogle Scholar
  3. [3]
    E J Zhao, J A Meng, Y M Ma and Z J Wu Phys. Chem. Chem. Phys.12 13158 (2010)CrossRefGoogle Scholar
  4. [4]
    M L S Arockiasamy, M Sundareswari and M Rajagopalan Indian J. Phys. 90 149 (2016)ADSCrossRefGoogle Scholar
  5. [5]
    S Kodambaka, S V Khare, V Petrova, D D Johnson, I Petrovl and J E Greene Phys. Rev. B67 035409 (2003)ADSCrossRefGoogle Scholar
  6. [6]
    S H Jhi, S G Louie, M L Cohen and J M Morris Phys. Rev. Lett. 87 075503 (2001)ADSCrossRefGoogle Scholar
  7. [7]
    B Indrajit Sharma, J Maibam, R S Paul, R K Thapa and R K Brojen Singh Indian J. Phys. 84 671 (2010)Google Scholar
  8. [8]
    S H Jhi, S G Louie, M L Cohen and J Ihm Phys. Rev. Lett. 86 3348 (2001)ADSCrossRefGoogle Scholar
  9. [9]
    S Kodambaka, S V Khare, I Petrov and J E Greene Surf. Sci. Rep. 60 55 (2006)ADSCrossRefGoogle Scholar
  10. [10]
    A Y Liu and M L Cohen Science245 841 (1989)ADSCrossRefGoogle Scholar
  11. [11]
    Y C Wang, T K Yao, H Li, J Lian, J H Li, Z P Li, J W Zhang and H Y Gou Comp. Mater. Sci. 56 116 (2012)CrossRefGoogle Scholar
  12. [12]
    H R Lei, J Zhu, Y J Hao, L Zhang, B R Yu and L Q Chen Physica B458 124 (2015)ADSCrossRefGoogle Scholar
  13. [13]
    A T Asvini meenaatci, R Rajeswarapalanichamy and K Iyakutti. Physica B406 2610 (2011)ADSCrossRefGoogle Scholar
  14. [14]
    Y L Li and Z Zeng Solid State Commun. 149 1591 (2009)ADSCrossRefGoogle Scholar
  15. [15]
    R Rajeswarapalanichamy, M Kavitha, G Sudha Priyanga and K Iyakutti J. Phys. Chem. Solids78 118 (2015)ADSCrossRefGoogle Scholar
  16. [16]
    W H Li J. Alloys Compd. 537 216 (2012)CrossRefGoogle Scholar
  17. [17]
    Y W Li and Y M Ma Solid State Commun. 150 759 (2010)ADSCrossRefGoogle Scholar
  18. [18]
    P F Weck, E Kim and K R Czerwinski Dalton Trans.40 6738 (2011)CrossRefGoogle Scholar
  19. [19]
    Y C Liang, C Li, W L Guo and W Q Zhang Phys. Rev. B79 024111 (2009)ADSCrossRefGoogle Scholar
  20. [20]
    E J Zhao and Z J Wu Comp. Mater. Sci.44 531 (2008)CrossRefGoogle Scholar
  21. [21]
    Y L Li and Z Zeng Chem. Phys. Lett.474 93 (2009)ADSCrossRefGoogle Scholar
  22. [22]
    X P Du, Y X Wang and V C Lo Phys. Lett.374 2569 (2010)CrossRefGoogle Scholar
  23. [23]
    Y C Wang, J Lv, L Zhu and Y M Ma Phys. Rev. B82 094116 (2010)ADSCrossRefGoogle Scholar
  24. [24]
    Y C Wang, J Lv, L Zhu and Y M Ma Comput. Phys. Commun. 183 2063 (2012)ADSCrossRefGoogle Scholar
  25. [25]
    P Hohenberg and W Kohn Phys. Rev.136 B864 (1964)ADSCrossRefGoogle Scholar
  26. [26]
    W Kohn and L J Sham Phys. Rev.140 A1133 (1965)ADSCrossRefGoogle Scholar
  27. [27]
    G Kresse and J Furthmuller Phys. Rev. B54 11169 (1996)ADSCrossRefGoogle Scholar
  28. [28]
    G Kresse and J Hafner Phys Rev. B47 558 (1993)ADSCrossRefGoogle Scholar
  29. [29]
    G Kresse and D Joubert Phys. Rev. B59 1758 (1999)ADSCrossRefGoogle Scholar
  30. [30]
    J P Perdew, J A Chevary, S H Vosko, K A Jackson, M R Pederson, D J Singh and C Fiolhais Phys. Rev. B46 6671 (1992)ADSCrossRefGoogle Scholar
  31. [31]
    J P Perdew, S Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)ADSCrossRefGoogle Scholar
  32. [32]
    Z J Wu, E J Zhao, H P Xiang, X F Hao, X J Liu and J Meng Phys. Rev. B76 054115 (2007)ADSCrossRefGoogle Scholar
  33. [33]
    H J Mcskimin, P Andreatch and P Glynn J. Appl. Phys.43 985 (1972)ADSCrossRefGoogle Scholar
  34. [34]
    R Hill Proc. Phys. Soc. Lond.65 350 (1952)ADSCrossRefGoogle Scholar
  35. [35]
    X Q Chen, H Y Niu, D Z Li and Y Y Li Intermetalics19 1275 (2011)CrossRefGoogle Scholar
  36. [36]
    Y J Tian, B Xu and Z S Zhao Int. J. Refract. Met. Hard Mater.33 93 (2012)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  • H. Y. Wang
    • 1
  • P. Yan
    • 1
  • L. Xu
    • 1
    Email author
  • D. W. Zhou
    • 2
  • D. Li
    • 3
  1. 1.School of Materials Science and EngineeringHenan Polytechnic UniversityJiaozuoChina
  2. 2.College of Physics and Electronic EngineeringNanyang Normal UniversityNanyangChina
  3. 3.Public Experimental Teaching CenterPanzhihua UniversityPanzhihuaChina

Personalised recommendations