Microwave multichannel tunable filter based on transmission and reflection properties of 1D magnetized plasma photonic crystal heterostructures


The transmission and reflection properties of one-dimensional magnetized plasma photonic crystal heterostructures have been theoretically investigated. The proposed structure is composed of two sub-PCs containing magnetized cold plasma and lossless dielectric materials. The optical properties of the structure are suitable for multichannel tunable transmission filter and omnidirectional band-stop filters applications. The investigations have been carried out by applying transfer matrix method and employing electrostatic boundary conditions for TE and TM wave, respectively, in microwave region. The transmission spectra of the proposed structure possess external magnetic field-dependent 3N − 3 comb-like resonant peaks called as transmission channels for period number (N) > 1. Due to multiple interactions between forward and backward decaying evanescent waves in plasma and dielectric layers, respectively, 3N − 3 transmission channels are found in defect-free magnetized plasma photonic crystal heterostructure, enabling the structure to work as a multichannel filter. Next, the filter properties have been made tunable, i.e., channel frequency of each channel can either be red or blue shifted, depending upon the RHP and LHP configurations of external magnetic field under magneto-optical Faraday effect, respectively. The number of channels and their positions can also be modulated by changing the number of periods (N) and the incident angle (θ0) for TE and TM waves both besides other plasma parameters. Apart from the transmission properties of the proposed structure, we have also studied the reflection properties to obtain multichannel tunable omnidirectional photonic band gaps under the influence of external magnetic field. These results may be utilized to develop new kind of externally tunable single to multichannel omnidirectional band-stop filters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16


  1. [1]

    E Yablonovitch Phys. Rev. Lett. 58 2059 (1987)

    ADS  Google Scholar 

  2. [2]

    X K Kong, S B Liu, H F Zhang, C Z Li and B R Bian J. Opt 13 035101 (2011)

    ADS  Google Scholar 

  3. [3]

    C-Z Li, S-B Liu, X-K Kong, H-F Zhang, B-R Bian and X-Y Zhang IEEE Trans. Plasma Sci. 39(10) 1969 (2011)

    ADS  Google Scholar 

  4. [4]

    S K Awasthi, U Malaviya and S P Ojha J. Opt. Soc. Am. B 23(12) 2566 (2006)

    ADS  Google Scholar 

  5. [5]

    S K Awasthi, A Srivastava, U Malaviya and S P Ojha Solid State Commun. 146 506 (2008)

    ADS  Google Scholar 

  6. [6]

    L Shiveshwari and S K Awasthi Phys. Plasmas 22 092129 (2015)

    ADS  Google Scholar 

  7. [7]

    J Mizuguchi, Y Tanaka, S Tamura and M Notomi Phys. Rev. B 67 075109 (2003)

    ADS  Google Scholar 

  8. [8]

    H T Jiang, H Chen, H Q Li, Y W Zhang and S Y Zhu Appl. Phys. Lett. 83 5386 (2003)

    ADS  Google Scholar 

  9. [9]

    L G Wang, H Chen and S Y Zhu Phys. Rev. B 70 245102 (2004)

    ADS  Google Scholar 

  10. [10]

    V S C Manga Rao and S Hughes Phys. Rev. Lett. 99 193901 (2007)

    ADS  Google Scholar 

  11. [11]

    J S Li, L Zhou, C T Chan and P Sheng Phys. Rev. Lett. 90 083901 (2003)

    ADS  Google Scholar 

  12. [12]

    H T Jiang, H Chen, H Q Li, Y W Zhang, J Zi and S Y Zhu Phys. Rev. E 69 066607 (2004)

    ADS  Google Scholar 

  13. [13]

    O L Berman, Y E Lozovik, S L Eiderman and R D Coalson Phys. Rev. B 74 092505 (2006)

    ADS  Google Scholar 

  14. [14]

    H C Hung, C J Wu and S J Chang J. Appl. Phys. 110 093110 (2011)

    ADS  Google Scholar 

  15. [15]

    L M Li Appl. Phys. Lett. 78 3400 (2003)

    ADS  Google Scholar 

  16. [16]

    Q F Dai, Y W Li and H Z Wang Appl. Phys. Lett. 89 061121 (2006)

    ADS  Google Scholar 

  17. [17]

    D R Solli, C F McCormick, R Y Chiao and J M Hickmann Appl. Phys. Lett. 82 1036 (2003)

    ADS  Google Scholar 

  18. [18]

    W F Zhang, J H Liu, W P Huang and W Zhao Opt. Lett. 34 2676 (2009)

    ADS  Google Scholar 

  19. [19]

    Y H Chen Opt. Express 18 19920 (2010)

    ADS  Google Scholar 

  20. [20]

    H Zhang and H Zhang Plasma Sci. Technol. 20 105001 (2018)

    ADS  Google Scholar 

  21. [21]

    S Wicharn and P Buranasiri Mater. Today Proc. 05 11011 (2018)

    Google Scholar 

  22. [22]

    V Vepachedu, T G Mackay and A Lakhtakia Opt. Commu. 425 58 (2018)

    ADS  Google Scholar 

  23. [23]

    B Wang, F Righetti and M A Cappelli Phys. Plasmas 25 031902 (2018)

    ADS  Google Scholar 

  24. [24]

    S Wicharn, W Yindeesuk and P Buranasiri J. Opt. Soc. Am. B 35(9) 2125 (2018)

    ADS  Google Scholar 

  25. [25]

    X Wang, Y Liang, L Wu, J Guo, X Dai and Y Xiang Opt. Lett. 43(17) 4256 (2018)

    ADS  Google Scholar 

  26. [26]

    T W Chang, J R C Chien and C J Wu Appl. Opt. 55(4) 943 (2016)

    ADS  Google Scholar 

  27. [27]

    S Shukla, S Prasad and V Singh Phys. Plasmas 23 092111 (2016)

    ADS  Google Scholar 

  28. [28]

    C Nayak, A Aghajamali and A Saha Superlattices Microstrut. 111 248 (2017)

    ADS  Google Scholar 

  29. [29]

    C Nayak, A Saha and A Aghajamali Indian J. Phys. 97(7) 911 (2018)

    ADS  Google Scholar 

  30. [30]

    K Jamshidi-Ghaleh and F Moslemi Appl. Opt. 56(14) 4146 (2017)

    ADS  Google Scholar 

  31. [31]

    S K Awasthi, R Panda, P K Chauhan and L Shiveshwari Phys. Plasmas 25 052103 (2018)

    ADS  Google Scholar 

  32. [32]

    H-F Zhang, S-B Liu and H Yang J. Supercond. Novel Magn. 27(1) 41 (2014)

    Google Scholar 

  33. [33]

    H-F Zhang, S-B Liu, H Yang and H-M Li J. Supercond. Novel Magn. 26 3391 (2013)

    Google Scholar 

  34. [34]

    O El Abouti, E H El Boudouti, Y El Hassouani, A Noual and B Djafari-Rouhani Phys. Plasmas 23 082115 (2016)

    ADS  Google Scholar 

  35. [35]

    X K Kong, X Z Shi, J J Mo, Y T Fang, X L Chen and S B Liua Opt. Commun. 383 391 (2017)

    ADS  Google Scholar 

  36. [36]

    H F Zhang, XR Kong and GB Liu Solid State Commun. 292 27 (2019)

    ADS  Google Scholar 

  37. [37]

    V L Ginzburg The Propagation of Electromagnetic Waves in Plasmas (Oxford, UK: Pergamon) (1970)

    Google Scholar 

  38. [38]

    H Hojo and A Mase J. Plasma Fusion Res. 80 89 (2004)

    ADS  Google Scholar 

  39. [39]

    S K Awasthi, R Panda and L Shiveshwari Phys. Plasmas 24 072111 (2017)

    ADS  Google Scholar 

  40. [40]

    A Aghajamali, A Zare and C-J Wu Appl. Opt. 54(29) 8602 (2015)

    ADS  Google Scholar 

  41. [41]

    H-F Zhang, L Zeng and Y Q Chen Phys. Plasmas 26 032108 (2019)

    ADS  Google Scholar 

  42. [42]

    X K Kong, S B Liu, H F Zhang and C Z Li Phys. Plasmas 17 103506 (2010)

    ADS  Google Scholar 

  43. [43]

    S Prasad, Y Sharma, S Shukla and V Singh Phys. Plasmas 23 032123 (2016)

    ADS  Google Scholar 

  44. [44]

    H F Zhang, S B Liu and X K Kong Phys. Plasmas 19 122103 (2012)

    ADS  Google Scholar 

  45. [45]

    M Born and E Wolf “Basic Properties of the Electromagnetic Field” in Principles of Optics (UK: Cambridge University Press) pp. 1-70 (1980)

  46. [46]

    M R Wu, J R C Chien, C J Wu and S J Chang IEEE Photon. J. 8(1) 2700309 (2016)

    Google Scholar 

  47. [47]

    W H Lin, C J Wu, T J Yang and S J Chang Opt. Express 18(26) 27155 (2010)

    ADS  Google Scholar 

  48. [48]

    S Feng, J M Elson and P L Overfelt Opt. Express 13(11) 4113 (2005)

    ADS  Google Scholar 

Download references


One of the authors Dr. Suneet Kumar Awasthi would like to thank almighty for giving directions pertaining to this work. Authors are also thankful to Prof. R. S. Sirohi, Prof. S. P. Ojha and Prof. U. Malaviya for their helpful discussions required for this work.

Author information



Corresponding author

Correspondence to Suneet Kumar Awasthi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Awasthi, S.K., Panda, R., Verma, A. et al. Microwave multichannel tunable filter based on transmission and reflection properties of 1D magnetized plasma photonic crystal heterostructures. Indian J Phys 94, 1665–1678 (2020). https://doi.org/10.1007/s12648-019-01612-6

Download citation


  • Photonic band gap materials
  • Magnetic field
  • Heterostructures


  • 42.70.Qs
  • 78.20.Ls
  • 75.70.Cn