Advertisement

Axial vibration of single-walled carbon nanotubes with fractional damping using doublet mechanics

  • Alireza Fatahi-VajariEmail author
  • Zahra Azimzadeh
Original Paper
  • 32 Downloads

Abstract

This paper investigates the axial vibration of single-walled carbon nanotubes (SWCNTs) with fractional damping based on doublet mechanics. The Kelvin–Vigot model is used to incorporate damping effect for CNTs. By solving the equation of motion, the relation between natural frequency with scale parameter and fractional order is derived in the axial mode of vibration. It is shown that fractional order and scale parameter play significant roles in the axial vibration behavior of SWCNTs. Such effects decrease the natural frequency compared to the predictions of the classical continuum mechanics models and also ignores the damping effects. These effects on the natural frequency are more apparent in higher mode numbers and lower tube lengths and radii. Results for complex roots of characteristic equation obtained for a SWCNT without viscoelastic foundation, where imaginary parts represent damped frequencies, were compared with the results found from molecular mechanics simulations and a good agreement was achieved.

Keywords

Viscoelastic model of doublet mechanics Free axial vibration Scale parameter Fractional damping Single-walled carbon nanotubes 

PACS Nos.

46.40.-f 43.40.Cw 45.10.Hj 63.22.Gh 61.46.Fg 

Notes

References

  1. [1]
    M Ferrari, V T Granik, A Imam and J Nadeau Advances in Doublet Mechanics (Berlin: Springer) (1997)CrossRefGoogle Scholar
  2. [2]
    A Fatahi-Vajari and A Imam ZAMP 89 81 (2016)  https://doi.org/10.1007/s00033-016-0675-6 ADSGoogle Scholar
  3. [3]
    A C Eringen Int. J. Eng. Sci. 10 1 (1972)CrossRefGoogle Scholar
  4. [4]
    A Szabó et al. Materials 3 3092 (2010)ADSCrossRefGoogle Scholar
  5. [5]
    F Taleshi, A A Hosseini, M Mohammadi and M Pashaee Indian J. Phys. 87 873 (2013)ADSCrossRefGoogle Scholar
  6. [6]
    A Fatahi-Vajari and A Imam Indian J. Phys. 90 447 (2016)ADSCrossRefGoogle Scholar
  7. [7]
    S M Bachilo et al. Science 298 2361 (2002)ADSCrossRefGoogle Scholar
  8. [8]
    D Sanchez-Portal, E Artacho, J M Soler, A Rubio and P Ordejon Phys. Rev. B 59 12678 (1999)CrossRefGoogle Scholar
  9. [9]
    S S Gupta, F G Bosco and R C Batra Comput. Mater. Sci. 47 1049 (2010)CrossRefGoogle Scholar
  10. [10]
    S S Gupta and R C Batra Comput. Mater. Sci. 43 715 (2008)CrossRefGoogle Scholar
  11. [11]
    S S Rao Vibration of Continuous Systems (New Jersey: Wiley) (2007)Google Scholar
  12. [12]
    M H Sadd Elasticity Theory, Applications, and Numerics (Burlington: Elsevier Butterworth-Heinemann) (2005)Google Scholar
  13. [13]
    U Gul, M Aydogdu and G Gaygusuzoglu Compos. Struct. 160 1268 (2017)CrossRefGoogle Scholar
  14. [14]
    A Fatahi-Vajari, A Imam J. Solid Mech. 8 875 (2016)Google Scholar
  15. [15]
    U Gul and M Aydogdu Compos. Part B Eng. 137 60 (2018)CrossRefGoogle Scholar
  16. [16]
    A Fatahi-Vajari and A Imam ZAMM 96 1020 (2016)ADSCrossRefGoogle Scholar
  17. [17]
    V T Granik and M Ferrari Mech. Mater. 15 301 (1993)CrossRefGoogle Scholar
  18. [18]
    M Kojic, I Vlastelica, P Decuzzi, V T Granik and M Ferrari Comput. Methods Appl. Mech. Eng. 200 1446 (2011)ADSCrossRefGoogle Scholar
  19. [19]
    F Gentile, J Sakamoto, R Righetti, P Decuzzi and M Ferrari J. Biomed. Sci. Eng. 4 362 (2011)CrossRefGoogle Scholar
  20. [20]
    M Ferrari Biomed. Microdevices 2 273 (2000)Google Scholar
  21. [21]
    J Xin, L Xiao-Zhou and W Jun-Ru Chin. Phys. Lett. 26 074301-1 (2009)ADSGoogle Scholar
  22. [22]
    S S Lin and Y C Shen Soil Dyn. Earthq. Eng. 25 893 (2005)CrossRefGoogle Scholar
  23. [23]
    M H Sadd and Q Dai Mech. Mater. 37 641 (2005)CrossRefGoogle Scholar
  24. [24]
    G Mandal and T Ganguly Indian J. Phys. 85 1229 (2011)ADSCrossRefGoogle Scholar
  25. [25]
    F Maddalena and M Ferrari Mech. Mater. 20 241 (1995)CrossRefGoogle Scholar
  26. [26]
    A Fatahi-Vajari and Z Azimzadeh Indian J. Phys. 92 1425 (2018)ADSCrossRefGoogle Scholar
  27. [27]
    U Gul and M Aydogdu J. Mech. 34 279 (2018)CrossRefGoogle Scholar
  28. [28]
    A Fatahi-Vajari ZAMM 98 255 (2018)MathSciNetGoogle Scholar
  29. [29]
    M Imboden and P Mohanty Phys. Rep. 534 89 (2014)ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    A M Dıez-Pascual, M A Gomez-Fatou, F Ania and A Flores Prog. Mater. Sci. 67 94 (2015)Google Scholar
  31. [31]
    T M Atanackovic, S Pilipovic, B Stankovic and D Zorica Fractional Calculus with Applications in Mechanics (London: Wiley) (2014)CrossRefGoogle Scholar
  32. [32]
    J F Gomez-Aguilar, J J Rosales-Garcıa, J J Bernal-Alvarado, T Cordova-Fraga and R Guzman-Cabrera, Revista Mexicana de Física 58 348 (2012)Google Scholar
  33. [33]
    M Borowiec, G Litak and A Syta Shock Vib. 14 29 (2007)CrossRefGoogle Scholar
  34. [34]
    Y Lei, T Murmu, S Adhikari and M I Friswell Eur. J. Mech. A/Solids 42 125 (2013)ADSCrossRefGoogle Scholar
  35. [35]
    D Karlicic, M Cajic, T Murmu and S Adhikari Eur. J. Mech. A/Solids 49 183 (2015)ADSCrossRefGoogle Scholar
  36. [36]
    A H Ghorbanpour-Arani, A Rastgoo, M M Sharafi, R Kolahchi and A G Arani Meccanica 51 25 (2016)CrossRefGoogle Scholar
  37. [37]
    R L Bagley and P J Torvik J. Rheol. (1978-present) 30 133 (1986)Google Scholar
  38. [38]
    W J Welch, R A Rorrer and R G Duren Mech. Time-Dependent Mater. 3 279 (1999)ADSCrossRefGoogle Scholar
  39. [39]
    Y A Rossikhin and M V Shitikova Mech. Time-Dependent Mater. 5 131 (2001)ADSCrossRefGoogle Scholar
  40. [40]
    A Tofighi Physica A 329 29 (2003)ADSCrossRefGoogle Scholar
  41. [41]
    J F Gómez-Aguilar et al. Entropy 17 6289 (2015)ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    A W Wharmby and R L Bagley J. Rheol. (1978-present) 57 1429 (2013)Google Scholar
  43. [43]
    T D Shermergor J. Appl. Mech. Tech. Phys. 7 85 (1966)ADSCrossRefGoogle Scholar
  44. [44]
    R Ansari, M F Oskouie, F Sadeghi and M Bazdid-Vahdati Physica E 74 318 (2015)Google Scholar
  45. [45]
    R Ansari, M F Oskouie and R Gholami Physica E 75 266 (2016)Google Scholar
  46. [46]
    N Challamel, D Zorica, T M Atanackovic and DT Spasic Comptes Rendus Mécanique 341 298 (2013)Google Scholar
  47. [47]
    M Cajic, D Karlicic and M Lazarevic Meccanica (2017)  https://doi.org/10.1007/s11012-016-0417-z
  48. [48]
    M Cajic, D Karlicic, and M Lazarevi Theor. Appl. Mech. 42 167 (2015)ADSCrossRefGoogle Scholar
  49. [49]
    I Podlubny Fractional Differential Equation (San Diego: Academic Press) (1999)Google Scholar
  50. [50]
    A A Kilbas, H M Srivastava and J J Trujillo Theory and Applications of Fractional Differential Equation (Amsterdam: Elsevier) (2006)Google Scholar
  51. [51]
    Y Povstenko Linear Fractional Diffusion-Wave equation for Scientists and Engineers (New York: Birkhauser) (2015)Google Scholar
  52. [52]
    Y. Povstenko J. Therm. Stress. 39 1442 (2016)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Young Researchers and Elite Club, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey BranchIslamic Azad UniversityTehranIran

Personalised recommendations