Skip to main content

Advertisement

Log in

Simultaneous impact of nonlinear thermal radiation and heat source/sink in stagnation point flow of viscous nanomaterial

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

An attempt has been made to study the consequences of stagnation point flow of nanomaterial toward nonlinear variable sheet. Nanoparticles comprise Brownian movement and thermophoresis effects. Thermal radiation and convective boundary conditions are considered. Applied magnetic flux of strength (\(B_{0}\)) is implemented in vertical direction. The nonlinear system is tackled through homotopy method. Energy equation is modeled in the presence of thermal radiation, convective conditions and heat generation/absorption. The impact of several flow variables on the momentum, energy and concentration is graphically discussed. Concluding remarks are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(u,v\) :

Velocity components

\(x,y\) :

Space coordinates

\(T\) :

Fluid temperature

\(T_{\text{f}}\) :

Convective fluid temperature

\(T_{\infty }\) :

Ambient temperature

\(C\) :

Fluid concentration

\(C_{\infty }\) :

Ambient concentration

\(u_{w}\) :

Stretching velocity

\(u_{\text{e}}\) :

External flow velocity

\(B_{0}\) :

Strength of magnetic field

\(\rho_{\text{p}}\) :

Particle density

\(c_{p}\) :

Specific heat

\(Q\) :

Heat generation/absorption coefficient

\(q_{\text{r}}\) :

Radiative heat flux

\(k\) :

Thermal conductivity

\(h_{f}\) :

Convective heat transfer coefficient

\(D_{\text{B}}\) :

Brownian diffusion coefficient

\(D_{\text{T}}\) :

Thermophoresis diffusion coefficient

\(f\) :

Dimensionless velocity

\(M\) :

Magnetic parameter

\(A\) :

Ratio of velocities

\(R\) :

Radiation parameter

\(Pr\) :

Prandtl number

\(Nb\) :

Brownian motion parameter

\(Nt\) :

Thermophoresis parameter

\(Sc\) :

Schmidt number

\(\beta_{i}\) :

Biot number

\(Nu\) :

Local Nusselt number

\(Re_{x}\) :

Local Reynolds number

\(k^{*}\) :

Coefficient of mean absorption

\(a,b,c\) :

Positive constants

\(q_{w}\) :

Surface heat flux

\(\alpha^{*}\) :

Thermal diffusivity

\(\tau_{w}\) :

Surface shear stress

\(\sigma^{*}\) :

Stefan-Boltzmann constant

\(\beta_{t}\) :

Biot number

\(\delta\) :

Heat generation/absorption parameter

\(\theta_{w}\) :

Temperature parameter

\(\alpha\) :

Thickness parameter

\(\gamma_{1}\) :

Chemical reaction parameter

\(\theta\) :

Dimensionless temperature

\(\phi\) :

Dimensionless concentration

\(\psi\) :

Stream function

\(\eta\) :

Dimensionless space variable

\(\tau\) :

Capacity ratio

\(\nu\) :

Kinematic viscosity

\(\mu_{f}\) :

Dynamic viscosity

\(\rho\) :

Fluid density

\(\infty\) :

Condition at the free stream

w :

Condition at the surface

References

  1. N Patra, P Ghosh, R S Singh and A Nayak Int. Heat Mass Transf.135 331 (2019)

    Google Scholar 

  2. Y Wang, K Deng, J Wu, G Su and S Qiu Int. J. Heat Mass Transf.122 212 (2018)

    Google Scholar 

  3. S M Atif, S Hussain and M Sagheer Phys. Lett. A.383 1187 (2019)

    ADS  MathSciNet  Google Scholar 

  4. M I Khan, A Kumar, T Hayat, M Waqas and R Singh J. Mol. Liq.278 677 (2019)

    Google Scholar 

  5. S H Seyedi, B N Saray and A Ramazani Powder Technol.340 264 (2018)

    Google Scholar 

  6. H E Ahmed, B H Salman and A S Kerbeet Int J. Heat Mass Transf.134 30 (2019)

    Google Scholar 

  7. A Sergis, Y Hardalupas and T R Barrett Exper. Thermal Fluid Sci.93 32 (2018)

    Google Scholar 

  8. A. A. Minea and P. Estellé J. Mol. Liq.271 281 (2018)

  9. H A Mohammed, I A M A Abuobeida, H B Vuthaluru and S. Liu Commun. Heat Mass Transf.101 10 (2019)

    Google Scholar 

  10. A Abdollahi, H A Mohammed, S M Vanaki and R N Sharma Ain Shams Eng. J.9 3411 (2018)

  11. R Kandasamy, N A Adnan, J A A Abbood, M Kamarulzaki and M Saifullah Eng. Sci. Technol. Int. J.22 229 (2019)

    Google Scholar 

  12. M Bezaatpour and M Goharkhah Powder Technol. 344 68 (2019)

    Google Scholar 

  13. R Dormohammadi, M F Gord, A E Moghadam and M H Ahmadi J. Mol. Liq.269 229 (2018)

    Google Scholar 

  14. M Sheikholeslami, H R Kataria and A S Mittal J.Mol. Liq.257 12 (2018)

    Google Scholar 

  15. X Zhai, C Qi, Y Pan, T Luo and L Liang Int. J. Heat Mass Transf.130 989 (2019)

    Google Scholar 

  16. G Xu, J Fu, B Dong, Y Quan and G Song Int. J. Heat Mass Transf.130 978 (2019)

    Google Scholar 

  17. M Sheikholeslami and K Vajravelu Chinese J. Phys.56 1578 (2018)

    Google Scholar 

  18. M Javanmard, M H Taheri, M Abbasi and S M Ebrahimi Chem. Eng. Res. Des. 136 816 (2018)

    Google Scholar 

  19. P. Rana and N. Shukla Alex. Eng. J.57 3299 (2018)

  20. H Ragueb and K Mansouri Int. J. Heat Mass Transf.127 469 (2018)

    Google Scholar 

  21. M Turkyilmazoglu Appl. Math. Mod.71 1 (2019)

  22. K L Hsiao Int. J. Heat Mass Transf.112 983 (2017)

  23. K L Hsiao Appl. Thermal Eng.112 1281 (2017)

  24. K L Hsiao Energy130 486 (2017)

  25. K L Hsiao Appl. Thermal Eng. 98 850 (2016).

  26. M Waqas, M I Khan, T Hayat and A Alsaedi Results Phys.7 2489 (2017)

    Google Scholar 

  27. M Turkyilmazoglu European J. Mech.-B/Fluid.68 76-84 (2018).

  28. T Hayat, M I Khan, M Farooq, A Alsaedi, M Waqas and T Yasmeen Int. J. Heat Mass Transf.99 702 (2016)

    Google Scholar 

  29. M I Khan, M Waqas, T Hayat and A Alsaedi J. Colloid Interface Sci.498 85 (2017)

    ADS  Google Scholar 

  30. M Turkyilmazoglu J. Comput. Sci.31 54 (2019)

  31. M I Khan, T Hayat, M I Khan and A Alsaedi Int. J. Heat Mass Transf.113 310 (2017).

    Google Scholar 

  32. T Hayat, M I Khan, S Qayyum and A Alsaedi Colloid. Surf. A: Physicoch. Eng. Aspect.539 335 (2018).

    Google Scholar 

  33. T Hayat, M I Khan, M Farooq, T Yasmeen and A Alsaedi J. Mol. Liq.224 786 (2016).

    Google Scholar 

  34. M Turkyilmazoglu Adv. Appl. Math. Mech.10 1 (2019).

  35. M I Khan, M Waqas, T Hayat, M I Khan and A Alsaedi, Int. J. Mech. Sci.132 426 (2017).

    Google Scholar 

  36. S Qayyum, R Khan and H Habib Int. J. Mech. Sci.133 1 (2017).

    Google Scholar 

  37. M I Khan, M I Khan, M Waqas, T Hayat and A Alsaedi, Int. Commun. Heat Mass Transf.86 231 (2017)

    Google Scholar 

  38. T Hayat, M I Khan, M Waqas and A Alsaedi J. Mol. Liq.231 126 (2017)

    Google Scholar 

  39. T Hayat, M Waqas, M I Khan, A Alsaedi and S A Shehzad Chin. J. Phys.55 318 (2017)

    Google Scholar 

  40. T Hayat, M I Khan, M Waqas and A Alsaedi Results Phys.7 256 (2017)

    Google Scholar 

  41. M I Khan, T Yasmeen, M I Khan, M Farooq and M Wakeel Renew. Sustain. Energy Rev. 66 702 (2016)

    Google Scholar 

  42. T Hayat, M I Khan, M Waqas and A Alsaedi Results Phys.7 446 (2017)

    Google Scholar 

  43. N B Khan, Z Ibrahim, M I Khan, T Hayat and M F Javed Int. J. Heat Mass Transf. 121 309 (2018)

    Google Scholar 

  44. T Hayat, M W A Khan, A Alsaedi and M I Khan Colloid Polymer Sci.295 2439 (2017)

    Google Scholar 

  45. M W A Khan M I Khan, T Hayat and A Alsaedi Physica B: Cond. Matt.534 113 (2018)

  46. M Tamoor, M Waqas, M I Khan, A Alsaedi and T Hayat Results Phys. 7 498 (2017)

    Google Scholar 

  47. M Waqas, M I Khan, T Hayat, A Alsaedi and M I Khan Eur. Phys. J. Plus132 280 (2017).

    Google Scholar 

  48. T Hayat, M I Khan, S Qayyum, A Alsaedi and M I Khan Phys. Lett. A382 749 (2018)

    ADS  Google Scholar 

  49. M I Khan M. Waqas T Hayat, A Alsaedi and M I Khan Int. J. Hydrogen Energy42 26408 (2017)

  50. M R Shirkhani, H A Hoshyar, I Rahimipetroudi, H Akhavan and D D Ganji Propul. Power Res. 7 247 (2018)

    Google Scholar 

  51. T Hayat, S Qayyum, M I Khan and A Alsaedi Chin. J. Phys.55 2501 (2017)

    Google Scholar 

  52. A I Fagbade, B O Falodun and A J Omowaye Ain Shams Eng. J.9 1029 (2018)

  53. M I Khan, M Tamoor, T Hayat and A Alsaedi Results Phys.7 1207 (2017)

    Google Scholar 

  54. S Skoneczny and M C Skoneczny Chem. Eng. Resear. Des.139 309 (2018)

    Google Scholar 

  55. M I Khan, T Hayat, M I Khan, M Waqas and A Alsaedi J. Phys. Chem. Solid.125 153 (2019)

    ADS  Google Scholar 

  56. S Naghshband and M A F Araghi Ain Shams Eng. J.9 607 (2018)

    Google Scholar 

  57. T Hayat, M I Khan, S A Shehzad, M I Khan and A Alsaedi Math. Method. Appl. Sci.41 4352 (2018)

    Google Scholar 

  58. B Raftari and K Vajravelu Commun. Nonlinear Sci. Numer. Simul.17 4149 (2012)

    ADS  Google Scholar 

  59. T Hayat, S Ahmed, M I Khan, M I Khan and A Alsaedi Nuclear Sci. Technol.50 389 (2018)

    Google Scholar 

  60. S Xinhui, Z Liancun, Z Xinxin and S Xinyi Appl. Math. Mod.36 1806 (2012)

    Google Scholar 

  61. T Hayat, M I Khan, T A Khan, M I Khan, S Ahmad and A Alsaedi J. Mol. Liq.265 629 (2018)

    Google Scholar 

  62. S Han, L Zheng, C Li and X Zhang Appl. Math. Lett.38 87 (2014)

    Google Scholar 

  63. M Turkyilmazoglu Appl. Math. Lett.23 1226 (2010)

  64. M I Khan, T Hayat, A Alsaedi, S Qayyum and M Tamoor Int. J. Heat Mass Transf.127 829 (2018)

    Google Scholar 

  65. M Turkyilmazoglu Int. J. Heat Mass Transf.78 150 (2014)

  66. M I Khan, A Alsaedi, S A Shehzad and T Hayat Results Phys.7 2255 (2017)

    Google Scholar 

  67. M Turkyilmazoglu Comput Fluid.39 793 (2010)

  68. S Ahmad, M I Khan, T Hayat, M I Khan and A Alsaedi Colloid Surfaces A: Physicochem. Eng. Aspect.554 197 (2018)

    Google Scholar 

  69. F M Abbasi, I Shanakhat and S A Shehzad J. Magnet. Mag. Mater.474 434 (2019)

    ADS  Google Scholar 

  70. T Hayat, A N, M I Khan and A Alsaedi Microsystem Technol. 25 609 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ijaz Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, F., Ijaz Khan, M., Hayat, T. et al. Simultaneous impact of nonlinear thermal radiation and heat source/sink in stagnation point flow of viscous nanomaterial. Indian J Phys 94, 657–664 (2020). https://doi.org/10.1007/s12648-019-01510-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01510-x

Keywords

PACS Nos.

Navigation