Abstract
The ratio of particles’ yield: π−/π+, K−/K+, \(\bar{p}\)/\(p\), and \(p /\pi\), \(K /\pi\) and \(p /K\) is measured as a function of pseudorapidity (η) in pp collisions at √s = 0.9 TeV using different hadron production models. The ratio measured in the three different transverse momentum (pT) regions was: 0 < pT < 0.8 GeV/c, 0.8 < pT < 1.2 GeV/c and pT > 1.2 GeV/c and at pseudorapidity regions of 3.0 < η < 4.5 and 2.5 < η < 4.5. The results are compared with measurements of LHCb experiment. The π−/π+ ratio from different MC generators at different transverse momentum and rapidity regions are in wholesome agreement with the measurements while K−/K+ and \(\bar{p}\)/\(p\) ratios are in suitable agreement with data in some region of pT and η, but mostly the models do not depict the data adequately. Similarly, for the different particle ratios, the model predictions and the experimental data have similar results in some regions, but none of the model completely describes all experimental measurements. Such comparisons will help to tune MC generators used for hadrons production studies.
This is a preview of subscription content, access via your institution.






References
N Hermann, et al. Annu. Rev. Nucl.Part. Sci. 49 581 (1999)
H. Satz, Rep. Prog. Phys.63 151 (2000)
G C Rossi and G Veneziano Nucl. Phys. B123 507 (1977)
A Capella et al. Phys. Rep.236 225 (1994)
A B Kaidalov and K A Ter-Martirosyan Sov. J. Nucl. Phys.39 1545 (1984)
X Artru Nucl. Phys. B85 442 (1975)
M Imachi, S Otsuki and F Toyoda Prog. Theor. Phys.52 341 (1974)
M Imachi, S Otsuki and F Toyoda Prog. Theor. Phys.54 280 (1975)
B Z Kopeliovich Sov. J. Nucl. Phys.45 1078 (1987)
B Z Kopeliovich, B Povh Z. Phys. C75 693 (1997)
B Z Kopeliovich and B Povh Phys. Lett. B446 321 (1999)
D Kharzeev Phys. Lett. B378 238 (1996)
C Merino et al. Eur. Phys. J. C54 577 (2008)
C Merino, M M Ryzhinskiy, Yu M Shabelski arXiv:0906.2659
S E Vance and M Gyulassy Phys. Rev. Lett.83 1735 (1999)
G C Rossi, G Veneziano Nucl. Phys. B123 507 (1977)
A B Kaidalov, K A Ter-Martirosyan Sov. J. Nucl. Phys.40 135 (1984)
X Artru Nucl. Phys. B85 442 (1975)
M Imachi, S Otsuki, F Toyoda Prog. Theor. Phys.52 1061 (1974)
M Imachi, S Otsuki, F Toyoda Prog. Theor. Phys.54 280 (1975)
B Z Kopeliovich Sov. J. Nucl. Phys.45 1078 (1987)
B Kopeliovich, B. Povh Z. Phys. C75 693 (1997)
B Kopeliovich, B Povh Phys. Lett. B446 321 (1999)
D Kharzeev Phys. Lett. B378 238 (1996)
G H Arakelyan et al. Eur. Phys. J. C54 577 (2008)
C Merino, M M Ryzhinskiy, Y M Shabelski, arXiv:0906.2659
S E Vance and M Gyulassy Phys. Rev. Lett.83 1735 (1999)
C Merino, C Pajares, M M Ryzhinskiy, Y M Shabelski, Odderon effects in pp collisions: predictions for LHC energies, arXiv:0906.2659
C Merino, C Pajares, M M Ryzhinskiy, Y M Shabelski, Pomeron and odderon contributions at LHC energies, arXiv:1007.3206
L Lukaszuk, B Nicolescu Lett. Nuovo Cimento8 405 (1973)
R Avila, P Gauron, B Nicolescu Eur. Phys. J. C49 581 (2007)
R Aaij et al. (LHCb Collaboration) Eur. Phys. J. C72 2168 (2012)
M Hladik, H J Drescher, S Ostapchenko, T Pierog, and K. Werner et al. Phys. Rev. Lett.86 3506 (2001)
T Pierog, Iu Karpenko, S Porteboeuf, and K Werner arXiv:1011.3748v1
K Werner and T Pierog, Proc. 31stICRC, LODZ 2009
K Werner et al. Phys. Rev. C74 044902 (2006)
K Werner Phys. Rev. Lett.98 152301 (2007)
M. Ajaz et al. Mod. Phys. Lett. A34 1950100 (2019)
Y. Ali et al. Int. J. Theo. Phys.58 931 (2019)
M. Ajaz et al. Mod. Phys. Lett. A34 1950090 (2019)
U. Tabassam et al. Int. J. Mod. Phys. E27 1850036 (2018)
P. Christiansen et al. (ALICE Collaboration) Nucl. Phys. A926 264 (2014)
T Pierog and K Werner Nucl. Phys. Proc. Suppl.196 102 (2009)
T Pierog et al. Phys. Rev. C92 034906 (2015)
S Ostapchenko Phys. Rev. D83 014018 (2011)
J Engel, T K Gaisser, T Stanev and P Lipari Phys. Rev. D46 5013 (1992)
R S Fletcher, T K Gaisser, P Lipari and T Stanev Phys. Rev. D50 5710 (1994)
E -J Ahn, R Engel, T K Gaisser, P Lipari and T Stanev Phys. Rev. D80 094003 (2009)
M L Good, W D Walker Phys. Rev.120 1857 (1960)
R Engel, T K Gaisser, F Riehn and T Stanev Proc. 34th Int. Cosmic Ray Conf., The Hague (Netherlands), 1 1313 (2015)
Acknowledgements
This work is supported by the Higher Education Commission (HEC) of Pakistan by the Grant No. 20-3379/NRPU/R&D/HEC/2014.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ajaz, M., Khan, R., Bilal, M. et al. Models prediction of particles ratio in pp collisions at √s = 900 GeV. Indian J Phys 94, 719–724 (2020). https://doi.org/10.1007/s12648-019-01504-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12648-019-01504-9
Keywords
- Light-flavored hadrons
- Particle ratio
- LHC energies
- Model predictions
PACS Nos.
- 13.85.Ni
- 14.20.-c
- 14.40.-n