Advertisement

Semiconductor behavior of halide perovskites AGeX3 (A = K, Rb and Cs; X = F, Cl and Br): first-principles calculations

  • Mohammed Houari
  • Bouabdellah BouadjemiEmail author
  • Slimane Haid
  • Mohamed Matougui
  • Tayeb Lantri
  • Zoubir Aziz
  • Samir Bentata
  • Bachir Bouhafs
Original Paper
  • 36 Downloads

Abstract

The structural, elastic and optoelectronic properties for cubic halide perovskites AGeX3 (A = K, Rb and Cs, X = F, Cl and Br) have been successfully studied in this paper, using the density functional theory with the generalized gradient approximation of Perdew–Burke–Ernzerhof (GGA-PBE). The modified Becke–Johnson (mBJ-GGA) potential approximation was used to describe the band structure more accurately. The calculated band structure from mBJ gives appropriate optoelectronic properties of these materials. Band structure calculations reveal a semiconducting behavior with a direct band gap at the R-point in the reciprocal lattice space, with values lying between 0.79 and 2.87 eV. The compounds of interest are mechanically stable, anisotropic and ductile in nature. The optical properties indicate that these compounds can be used in various optoelectronic devices operating in the visible and ultraviolet energies. To the best of our knowledge, this is the first quantitative theoretical prediction of the elastic, electronic and optical properties for these compounds which still awaits experimental confirmation.

Keywords

Density functional theory FP-LAPW Halide perovskites Elastic properties 

PACS Nos.

75.40.Mg 74.25.Jb 74.25.Gz 42.25.Bs 78.20.Ci 78.40.Fy 

Notes

Acknowledgements

I extend my thanks to Prof. Dr. Eng. Rabah KHENATA, Head of LPQ3M-Laboratory, Faculty of Sciences & Technology, Mascara University, 29000, Algeria. I thank him for helping me, giving guidance and advice.

References

  1. [1]
    J Bisquert The Physics of Solar Cells Perovskites, Organics, and Photovoltaic Fundamentals (CRC Press) (2017)Google Scholar
  2. [2]
    C C Stoumpos, C D Malliakas, J A Peters, Z Liu, M Sebastian, J Im, T C Chasapis, A C Wibowo, D Y Chung and A J Freeman Cryst. Growth Des. 13 2722 (2013)CrossRefGoogle Scholar
  3. [3]
    J Wei, N C Yeh, R P Vasquez and A Gupta J. Appl. Phys. 83 7366 (1998)ADSCrossRefGoogle Scholar
  4. [4]
    B Bouadjemi, S Bentata, A Abbad, W Benstaali and B Bouhafs Solid State Commun. 168 6 (2013)ADSCrossRefGoogle Scholar
  5. [5]
    S A Khandy and D C Gupta J. Electron. Mater. 46 5531 (2017)ADSCrossRefGoogle Scholar
  6. [6]
    S A Khandy, I Islam, D C Gupta, R Khenata, A Laref and S Rubab Mater. Res. Express 5 105702 (2018)ADSCrossRefGoogle Scholar
  7. [7]
    S A Khandy, I Islam, D C Gupta and A Laref J. Mol. Model. 24 131 (2018)CrossRefGoogle Scholar
  8. [8]
    R Terki, H Feraoun, G Bertrand and H Aourag Phys. Status Solidi (b) 242 1054 (2005)ADSCrossRefGoogle Scholar
  9. [9]
    J Torrance, P Lacorre, A Nazzal, E Ansaldo and C Niedermayer Phys. Rev. B 45 8209 (1992)ADSCrossRefGoogle Scholar
  10. [10]
    A Moskvin, A Makhnev, L Nomerovannaya, N Loshkareva and A Balbashov Phys. Rev. B 82 035106 (2010)ADSCrossRefGoogle Scholar
  11. [11]
    J W Fergus Sens. Actuators B Chem. 123 1169 (2007)CrossRefGoogle Scholar
  12. [12]
    A Cyza, A Kopia, Ł Cieniek and J Kusiński Mater. Today Proc. 3 2707 (2016)Google Scholar
  13. [13]
    M A Green, A Ho-Baillie and H J Snaith Nat. Photonics 8 2134 (2014)CrossRefGoogle Scholar
  14. [14]
    F Hao, C C Stoumpos, D H Cao, R P Chang and M G Kanatzidis Nat. Photonics 8 489 (2014)ADSCrossRefGoogle Scholar
  15. [15]
    H J Snaith J. Phys. Chem. Lett. 4 3623 (2013)CrossRefGoogle Scholar
  16. [16]
    T He, Q Huang, A Ramirez, Y Wang, K Regan, N Rogado, M Hayward, M Haas, J Slusky and K Inumara Nature 411 54 (2001)ADSCrossRefGoogle Scholar
  17. [17]
    H Fu and R E Cohen Nature 403 281 (2000)ADSCrossRefGoogle Scholar
  18. [18]
    Y Yamasaki, H Sagayama, N Abe, T Arima, K Sasai, M Matsuura, K Hirota, D Okuyama, Y Noda and Y Tokura Phys. Rev. Lett. 101 097204 (2008)ADSCrossRefGoogle Scholar
  19. [19]
    E Bousquet, M Dawber, N Stucki, C Lichtensteiger, P Hermet, S Gariglio, J M Triscone and P Ghosez Nature 452 732 (2008)ADSCrossRefGoogle Scholar
  20. [20]
    C Yu, Z Chen, J J Wang, W Pfenninger, N Vockic, J T Kenney and K Shum J. Appl. Phys. 110 063526 (2011)ADSCrossRefGoogle Scholar
  21. [21]
    L E Jones and R C Liebermann Phys. Earth Planet. Inter. 9 101 (1974)ADSCrossRefGoogle Scholar
  22. [22]
    J Im, C C Stoumpos, H Jin, A J Freeman and M G Kanatzidis J. Phys. Chem. Lett. 6 3503 (2015)CrossRefGoogle Scholar
  23. [23]
    R A Jishi, O B Ta and A A Sharif J. Phys. Chem. C 118 28344 (2014)CrossRefGoogle Scholar
  24. [24]
    S A Khandy and D C Gupta RSC Adv. 6 48009 (2016)CrossRefGoogle Scholar
  25. [25]
    J Kim, S C Lee, S H Lee and K H Hong J. Phys. Chem. C 119 4627 (2015)CrossRefGoogle Scholar
  26. [26]
    C Wehrenfennig, M Liu, H J Snaith, M B Johnston and L M Herz APL Mater. 2 081513 (2014)ADSCrossRefGoogle Scholar
  27. [27]
    M Liu, M B Johnston and H J Snaith Nature 501 395 (2013)ADSCrossRefGoogle Scholar
  28. [28]
    O Malinkiewicz, A Yella, Y H Lee, G M Espallargas, M Graetzel, M K Nazeeruddin and H J Bolink Nat. Photonics 8 128 (2014)ADSCrossRefGoogle Scholar
  29. [29]
    N J Jeon, J H Noh, W S Yang, Y C Kim, S Ryu, J Seo and S I Seok Nature 517 476 (2015)ADSCrossRefGoogle Scholar
  30. [30]
    Z K Tan, R S Moghaddam, M L Lai, P Docampo, R Higler, F Deschler, M Price, A Sadhanala, L M Pazos and D Credgington Nat. Nanotechnol. 9 687 (2014)ADSCrossRefGoogle Scholar
  31. [31]
    S Naeem, G Murtaza, R Khenata and M Khalid Phys. B Condens. Matter 414 91 (2013)CrossRefGoogle Scholar
  32. [32]
    S A Khandy and D C Gupta RSC Adv. 6 97641 (2016)CrossRefGoogle Scholar
  33. [33]
    K I Kobayashi, T Kimura, H Sawada, K Terakura and Y Tokura Nature 395 677 (1998)ADSCrossRefGoogle Scholar
  34. [34]
    B Raveau, A Maignan, C Martin and M Hervieu Chem. Mater. 10 2641 (1998)CrossRefGoogle Scholar
  35. [35]
    B Sahli, H Bouafia, B Abidri, A Bouaza, A Akriche, S Hiadsi and A Abdellaoui Int. J. Mod. Phys. B 30 1650230 (2016)ADSCrossRefGoogle Scholar
  36. [36]
    L Protesescu, S Yakunin, M I Bodnarchuk, F Krieg, R Caputo, C H Hendon, R X Yang, A Walsh and M V Kovalenko Nano Lett. 15 3692 (2015)ADSCrossRefGoogle Scholar
  37. [37]
    A Miyata, A Mitioglu, P Plochocka, O Portugall, J T Wang, S D Stranks, H J Snaith and R J Nicholas Nat. Phys. 11 582 (2015)ADSCrossRefGoogle Scholar
  38. [38]
    D P McMeekin, G Sadoughi, W Rehman, G E Eperon, M Saliba, M T Hörantner, A Haghighirad, N Sakai, L Korte and B Rech Science 351 151 (2016)ADSCrossRefGoogle Scholar
  39. [39]
    H Zhu, Y Fu, F Meng, X Wu, Z Gong, Q Ding, M V Gustafsson, M T Trinh, S Jin and X Zhu Nat. Mater. 14 636 (2015)ADSCrossRefGoogle Scholar
  40. [40]
    D B Mitzi, C Feild, W Harrison and A Guloy Nature 369 467 (1994)ADSCrossRefGoogle Scholar
  41. [41]
    V Luaña, A Costales, A M Pendás, M Flórez and V M G Fernández Solid State Commun. 104 47 (1997)ADSCrossRefGoogle Scholar
  42. [42]
    C Dotzler, G Williams and A Edgar Curr. Appl. Phys. 8 447 (2008)ADSCrossRefGoogle Scholar
  43. [43]
    M Roknuzzaman, K K Ostrikov, H Wang, A Du and T Tesfamichael Sci. Rep. 7 14025 (2017)ADSCrossRefGoogle Scholar
  44. [44]
    P Hohenberg and W Kohn Phys. Rev. B 136 864 (1964)ADSCrossRefGoogle Scholar
  45. [45]
    P Blaha, K Schwarz, G K H Madsen, D Kvasnicka and J Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna: Vienna University of Technology) (2001)Google Scholar
  46. [46]
    P Hohenberg and W Kohn Phys. Rev. 136 B864 (1964)ADSCrossRefGoogle Scholar
  47. [47]
    J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)ADSCrossRefGoogle Scholar
  48. [48]
    A D Becke and E R Johnson AIP (2006)Google Scholar
  49. [49]
    B Bouadjemi, S Bentata, A Abbad and W Benstaali Solid State Commun. 207 9 (2015)ADSCrossRefGoogle Scholar
  50. [50]
    F D Murnaghan Proc. Natl. Acad. Sci. U. S. A. 30 244 (1944)Google Scholar
  51. [51]
    T Krishnamoorthy, H Ding, C Yan, W L Leong, T Baikie, Z Zhang, M Sherburne, S Li, M Asta and N Mathews J. Mater. Chem. A 3 23829 (2015)CrossRefGoogle Scholar
  52. [52]
    M Brik Solid State Commun. 151 1733 (2011)ADSCrossRefGoogle Scholar
  53. [53]
    S Körbel, M A Marques and S Botti J. Mater. Chem. C 4 3157 (2016)CrossRefGoogle Scholar
  54. [54]
    L Li, Y J Wang, D X Liu, C G Ma, M Brik, A Suchocki, M Piasecki and A Reshak Mater. Chem. Phys. 188 39 (2017)CrossRefGoogle Scholar
  55. [55]
    G Murtaza and I Ahmad Phys. B Condens. Matter 406 3222 (2011)ADSGoogle Scholar
  56. [56]
    Z Huang, Y Zhao, H Hou and P Han Phys. B Condens. Matter 407 1075 (2012)ADSGoogle Scholar
  57. [57]
    A Yakoubi, O Baraka and B Bouhafs Results Phys. 2 58 (2012)ADSCrossRefGoogle Scholar
  58. [58]
    J Camargo-Martínez and R Baquero Phys. Rev. B 86 195106 (2012)ADSCrossRefGoogle Scholar
  59. [59]
    A Meziani, D Heciri and H Belkhir Phys. B Condens. Matter 406 3646 (2011)ADSGoogle Scholar
  60. [60]
    G Murtaza, I Ahmad and A Afaq Solid State Sci. 16 152 (2013)ADSCrossRefGoogle Scholar
  61. [61]
    B Philippe, B W Park, R Lindblad, J Oscarsson, S Ahmadi, E M Johansson and H K Rensmo Chem. Mater. 27 1720 (2015)CrossRefGoogle Scholar
  62. [62]
    W J Yin, J H Yang, J Kang, Y Yan and S H Wei J. Mater. Chem. A 3 8926 (2015)CrossRefGoogle Scholar
  63. [63]
    Z Wang, R Yu, C Pan, Z Li, J Yang, F Yi and Z L Wang Nat. Commun. 6 8401 (2015)ADSCrossRefGoogle Scholar
  64. [64]
    C D Bailie, M G Christoforo, J P Mailoa, A R Bowring, E L Unger, W H Nguyen, J Burschka, N Pellet, J Z Lee and M Grätzel Energy Environ. Sci. 8 956 (2015)CrossRefGoogle Scholar
  65. [65]
    K E Babu, N Murali, K V Babu, P T Shibeshi and V Veeraiah Presented at the AIP Conference Proceedings (2014)Google Scholar
  66. [66]
    M Mehl Phys. Rev. B 41 10311 (1990)ADSCrossRefGoogle Scholar
  67. [67]
    S A Dar, S A Khandy, I Islam, D C Gupta, U K Sakalle, V Srivastava and K Parrey Chin. J. Phys. 55 1769 (2017)ADSCrossRefGoogle Scholar
  68. [68]
    S Pugh Lond. Edinb. Dublin Philos. Mag. J. Sci. 45 823 (1954)Google Scholar
  69. [69]
    A Maachou, H Aboura, B Amrani, R Khenata, S Bin Omran and D Varshney Comput. Mater. Sci. 50 3123 (2011)Google Scholar
  70. [70]
    I Johnston Solid State Physics Simulations (Wiley) (1996)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Laboratory of Technology and of Solids PropertiesAbdelhamid Ibn Badis UniversityMostaganemAlgeria
  2. 2.Mustapha Stambouli University of MascaraMascaraAlgeria
  3. 3.Laboratory of Modelling and Simulation in Materials ScienceDjillali Liabès University of Sidi Bel-AbbèsSidi Bel AbbèsAlgeria

Personalised recommendations