Skip to main content
Log in

Computation of the vertical and horizontal polarizations of brightness temperature of flat surface water over the Persian Gulf at the L-Band

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The brightness temperature is the principle parameter detected by passive microwave radiometers. The radio frequency interference at L-band radiometers (e.g., SMOS, Aquarius and SMAP) impacts the quality of brightness temperature detection in many parts of the world such as the Middle East and the Persian Gulf. In the present work, vertical and horizontal polarizations of brightness temperature over flat surface water of Persian Gulf at L-band were calculated by using physical computations and an empirical model. For this purpose, Rayleigh–Jeans radiation law and Fresnel reflection equations were used and complex permittivity was calculated by Blanch and Aguasca model. Input data for the model calculations are temperature and salinity that were provided from World Ocean Atlas 2013. The calculations showed that the brightness temperature distribution in the Persian Gulf experiences significant spatial and seasonal variations. At nadir incidence angle, the vertical and horizontal components of brightness temperature over the Persian Gulf vary in the range 90.5–96.5 °k and 85.5–90.2 °k, respectively. At off-nadir incidence angle, the temporal variability pattern of brightness temperature horizontal polarization is similar to its vertical counterpart but the difference between them significantly increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F Jianqing, Z Yonglio, B Wei, Z Yongchun, L Chin J. Geochem.29 204 (2010)

    Article  Google Scholar 

  2. D Kumar Sarma, M Konwar, S Sharma Indian J. Radio Space Phys.35 (2006) 259 (2006)

  3. Y Soldo, D M Le Vine, P de Matthaeis, P Richaume IEEE Trans. Geosci. Remote Sens.55 7 (2017)

    Google Scholar 

  4. P N Mohammed, M Aksoy, J R Piepmeier, J T Johnson, A Bringer IEEE Trans. Geosci. Remote Sens. 54 10 (2016)

    Google Scholar 

  5. D M Le Vine, P De Matthaeis IEEE Geosci. Remote Sens. Lett. 11 10 (2014).

    Article  Google Scholar 

  6. R Oliva, E Daganzo, Y H Kerr, S Mecklenburg, S Nieto, P Richaume, C Gruhier IEEE Trans. Geosci. Remote Sens. 50 5 (2012).

    Google Scholar 

  7. L A Klein, C T Swift IEEE Trans. Antennas Propag.25 104 (1977)

    Article  ADS  Google Scholar 

  8. S Blanch, A Aguasca Geoscience and Remote Sensing Symposium (IGARSS 04): Proc. 2 p 1362 (2004)

  9. W J Ellison et al. Radio Sci.33 639 (1998)

  10. J P Hollinger IEEE Trans. Geosci. Electron9 165 (1971)

  11. A Stogryn J. Geophys. Res.77 1658 (1972)

    Article  ADS  Google Scholar 

  12. T Wilheit IEEE Trans. Geosci. Electron.17 244 (1979)

  13. F J Wentz J. Geophys. Res.88 1892 (1983)

  14. A Guissard, P Sobieski Int. J. Remote Sens.8 1607 (1987)

    Article  Google Scholar 

  15. C L Rufenach, R A Shuchman Int. J. Remote Sens.13 957 (1992)

    Article  Google Scholar 

  16. L Shubo, J Yanxia, Q Zhen, W Enbo J. Ocean Univ. China14 38 (2015)

    Article  Google Scholar 

  17. S Hassanzadeh, F hosseinibalam, A Rezaei-Latifi Appl. Math. Model.35 1512 (2011)

    Article  Google Scholar 

  18. F Hosseinibalam, S Hassanzadeh, A Rezaei-Latifi Appl. Math. Model.35 5884 (2011)

    Article  Google Scholar 

  19. S A Swift, A S Bower J. Geophys. Res.108 (2003)

  20. F Wentz J. Geophys. Res.80 3441 (1975)

  21. W Nordberg, J Conaway, D B Ross, T Wilheit J. Atmos. Sci.,38 429 (1971)

    Article  ADS  Google Scholar 

  22. P G Thoppil, P J Hogan Deep-Sea Res. I 57 (2010) 946–955

    Article  Google Scholar 

  23. R A Locarnini et al. World Ocean Atlas 2013, Temperature 1 (eds.) S Levitus and A Mishonov NOAA Atlas NESDIS 73, p 40 (2013)

  24. M M Zweng World Ocean Atlas 2013 Salinity. 1 (eds.) S Levitus and A Mishonov NOAA Atlas NESDIS 74, p 39 (2013)

  25. R.Michael Reynolds Mar. Pollut. Bull.27 35 (1993)

  26. A Rezaei-Latifi Appl. Math. Model.40 1069 (2016)

Download references

Acknowledgements

The author is grateful to Dr. Ali Reza Nafarzadegan and Dr. Mohsen Ebrahimi-Khusfi for their valuable advices and keen insights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Rezaei-Latifi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei-Latifi, A. Computation of the vertical and horizontal polarizations of brightness temperature of flat surface water over the Persian Gulf at the L-Band. Indian J Phys 94, 293–301 (2020). https://doi.org/10.1007/s12648-019-01464-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01464-0

Keywords

PACS Nos.

Navigation