Skip to main content
Log in

Gaussian, Shannon, and Tsallis entropies of bound magnetopolaron in Gaussian and asymmetric quantum qubit

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This paper compared the results of Gaussian, Shannon, and Tsallis entropies in the study of the decoherence of magnetopolaron in nanostructures in the presence of an electric field. The unitary transformation and linear combination method are used to derive the energy spectrum of the magnetopolaron in Gaussian and asymmetric quantum dot. Results suggest that Shannon entropy is suitable for the faster transmission of information about the system. With the increase in the strength of electric field and cyclotron frequency, the collapse revival in entropy is observed. With the asymmetric quantum dot, one realizes that the amount of information indicated by Shannon entropy is efficient than with other entropies. With the enhancement of the electric field strength, the entropies evolve as a wave envelop, and the information is transmitted as a wave bundle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S S Li, J B Xia, J L Liu, F H Yang, Z C Niu, S L Feng and H Z Zheng J. Appl. Phys.90 6151 (2001)

    Article  ADS  Google Scholar 

  2. L C Fai, A Fomethe, A Fotue, S C Kenfack, J T Diffo and V B Mborong, S Domngang J.Comput. Theor. Nanosci. 7 1 (2010)

    Article  Google Scholar 

  3. J L Xiao and W Xiao J. Phys. Condens. Matter9 10567 (1997)

    ADS  Google Scholar 

  4. Z Samak and B Saqqa An Najah Univ. J. Res. (N. Sc.)23 15 (2009)

    Google Scholar 

  5. Y Zhang, C Han, W Xin and Eerdunchaolu J. Low Temp. Phys.180 330 (2015)

    Article  ADS  Google Scholar 

  6. G Giavaras Physica E87 129 (2017)

    Article  ADS  Google Scholar 

  7. V Damodaran and K Ghosh Superlatt. Microstruct. 100 1042 (2016)

    Article  ADS  Google Scholar 

  8. R P Feynman Int. J. Theor. Phys.21 467 (1982)

    Article  Google Scholar 

  9. D Deutsch Proc. R. Soc. Lond. A400 97 (1985)

    ADS  Google Scholar 

  10. P W Shor Algorithms for quantum computation: Discrete logarithms and factoring. Proc. 35nd Annual Symposium on Foundations of Computer Science (Shafi Goldwasser, Computer Society Press) (1994)

  11. R L Rivest, A Shamir and L M Adleman CACM21 120 (1978)

    Article  Google Scholar 

  12. L K Grover Phys. Rev. Lett.79 325 (1997)

    Article  ADS  Google Scholar 

  13. L C L Hollenberg Phys. Rev. E62 7532 (2000)

    Article  ADS  Google Scholar 

  14. R Schäutzhold Phys. Rev. A67 062311 (2003)

    Article  ADS  Google Scholar 

  15. D P DiVincenzo Science270 255 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  16. D P DiVincenzo and D Loss Superlatt. Microstruct.23 419 (1998).

    Article  ADS  Google Scholar 

  17. D Aharonov and M Ben-Or SIAM J. Comput.38 1207 (2008)

    Article  MathSciNet  Google Scholar 

  18. E Knill Nature434 39 (2005)

    Article  ADS  Google Scholar 

  19. S H Chen Physica B405 843 (2010)

    Article  ADS  Google Scholar 

  20. C E Shannon Bell Syst. Tech. J.27 379 (1948)

    Article  Google Scholar 

  21. C Tsallis J. Stat. Phys.52 479 (1988)

    Article  ADS  Google Scholar 

  22. A Rényi Math. Stat. Prob.574, 561 (1961)

  23. S Seba and M Hanmandlu Neurocomputing120 214 (2013)

    Article  Google Scholar 

  24. R Khordad and H R R Sedehi Ind. J. Phys.91 825 (2017)

    Article  Google Scholar 

  25. M Tiotsop, A J Fotue, H B Fotsin and L C Fai Superlatt. Microstuct.105 163 (2017)

    Article  ADS  Google Scholar 

  26. M Tiotsop, A J Fotue, G K Fautso, C S Kenfack, H B Fotsin and L C Fai Superlatt. Microstruct.103 70 (2017)

    Article  ADS  Google Scholar 

  27. A J Fotue et al. Eur. Phys. J. Plus131 205 (2016)

    Article  Google Scholar 

  28. A J Fotue, M Tiotsop, G K Fautso, C S Kenfack, H B Fotsin and L C Fai Chin. J. Phys.54 483 (2016)

    Article  Google Scholar 

  29. A J Fotue et al. Am. J. Mod. Phys. 4 138 (2015)

    Article  Google Scholar 

  30. S Seba and M Sharma Neurocomputing239 232 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tiotsop.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiotsop, M., Fautso, G.K., Fotue, A.J. et al. Gaussian, Shannon, and Tsallis entropies of bound magnetopolaron in Gaussian and asymmetric quantum qubit. Indian J Phys 94, 333–340 (2020). https://doi.org/10.1007/s12648-019-01463-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01463-1

Keywords

PACS Nos.

Navigation