Skip to main content
Log in

Three-dimensional magnetohydrodynamic flow of micropolar CNT-based nanofluid through a horizontal rotating channel: OHAM analysis

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

An examination of simultaneous effects of Hall current and heat radiation on three-dimensional micropolar CNT-based nanofluid flow between two rotating sheets is carried out. The upper sheet is considered to be porous, and the fluid flow is induced due to stretching of the lower sheet. The flow model is presented by a system of nonlinear partial differential equations (PDEs). The leading PDEs are transformed into dimensionless coupled ordinary differential equations by the usual procedure of transformation. The transformed differential equations are solved by the optimal homotopy analysis method in order to analyze the velocity as well as temperature of nanofluid and microrotation of nanotubes. Analysis for physical quantities of interest, viz. skin friction coefficient and Nusselt number, are also carried out for the two kinds of nanotubes, single-wall carbon nanotubes and multiwall carbon nanotubes. It is observed that microrotation of nanotubes increased with the increase in coupling parameter, whereas it slows down with an increase in spin gradient viscosity parameter. An intense magnetic field results in a reduction of skin friction coefficient, whereas an increase in the suction of fluid through upper plate forces a surge in the value of skin friction coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. A C Eringen J. Math. Mech.16 1 (1966)

    Google Scholar 

  2. A C Eringen Proc. 5th Symposium on Naval Hydrodynamics (Bergen) (1964)

  3. A C Eringen J. Math. Anal. Appl.38 480 (1972)

    Google Scholar 

  4. X Si, L Zheng, P Lin, X Zhang and Y Zhang Int. J. Heat Mass Transf.67 885 (2013)

    Google Scholar 

  5. J P Kumar, J C Umavathi, A J Chamkha and I Pop Appl. Math. Model.34 1175 (2010)

    Google Scholar 

  6. P S Ramachandran, M N Mathur and S K Ojha Int. J. Eng. Sci.17 625 (1979)

    Google Scholar 

  7. A Borrelli, G Giantesio and M C Patria Int. J. Heat Mass Transf.80 614 (2015)

    Google Scholar 

  8. M Shamshuddin, O A Bég and M S Ram Indian J. Phys.92 215 (2018)

    ADS  Google Scholar 

  9. Q Xue Phys. B Condens. Matter.368 302 (2005)

    ADS  Google Scholar 

  10. R U Haq, S Nadeem, Z H Khan and N F M Noor Phys. B Condens. Matter457 40 (2015)

    ADS  Google Scholar 

  11. U Khan, N Ahmed and S T Mohyud-Din. Appl. Therm. Eng.113 1107 (2017)

    Google Scholar 

  12. R U Haq, Z H Khan and W A Khan Physica E63 215 (2014)

    Google Scholar 

  13. M Sheikholeslami, R Ellahi and K Vafai Alex. Eng J.57 565 (2018)

    Google Scholar 

  14. S Z Alamri, A A Khan, M Azeez and R Ellahi Phys. Lett. A383 276 (2019)

    ADS  MathSciNet  Google Scholar 

  15. M Sheikholeslami, D D Ganji, M Y Javed and R Ellahi J. Magn. Magn. Mater.374 36 (2015)

    ADS  Google Scholar 

  16. A Kumar, R Singh, G S Seth and R Tripathi J. Nanofluids7 1 (2018)

    Google Scholar 

  17. M Sheikholeslami, M G Bandpy, R Ellahi and A Zeeshan J. Magn. Magn. Mater.369 69 (2014)

    ADS  Google Scholar 

  18. S Z Alamri, R Ellahi, N Shehzad and A Zeeshan J. Mol. Liq. 273 292 (2019)

    Google Scholar 

  19. M Sheikholeslami Comput. Methods Appl. Mech. Eng. 344 319 (2019)

    ADS  MathSciNet  Google Scholar 

  20. A Kumar, R Singh, G S Seth and R Tripathi Int. J. Heat Tech.36 1430 (2018)

    Google Scholar 

  21. N Shehzad, A Zeeshan and R Ellahi Commun. Theor. Phys. 69 655 (2018)

    ADS  Google Scholar 

  22. T G Cowling, Magnetohydrodynamic, (New York: Interscience Publishers) (1957)

    Google Scholar 

  23. M Sheikholeslami, H R Ashorynejad, D Domairry and I Hashim Sains Malaysiana41 1177 (2012)

    Google Scholar 

  24. S Chandra and J C Misra J. Mol. Liq.224 818 (2016)

    Google Scholar 

  25. P V S Narayana, B Venkateswarlu and S Venkataramana Ain Shams Eng. J.4 843 (2013)

    Google Scholar 

  26. R Tripathi, G S Seth and M K Mishra Adv. Powder Technol.28 2630 (2017)

    Google Scholar 

  27. Z Shah, S Islam, T Gul, E Bonyah and M A Khan Results in Physics9 1201 (2018)

    ADS  Google Scholar 

  28. D Prakash and M Muthtamilselvan, Ain Shams Eng. J.5 1277 (2014)

    Google Scholar 

  29. A S Dogonchi, M Alizadeh and D D Ganji Adv. Powder Technol.28 1815 (2017)

    Google Scholar 

  30. M Sheikholeslami, M M Rashidi and D D Ganji J. Taiwan Inst. Chem. E J.47 6 (2015)

    Google Scholar 

  31. S A Shehzad, Z Abdullah, A Alsaedi, F M Abbasi and T Hayat J. Magn. Magn. Mater.397 108 (2016)

    ADS  Google Scholar 

  32. G C Shit and R Haldar App. Math. Mech.32 677 (2011)

    Google Scholar 

  33. A S Dogonchi and D D Ganji Indian J. Phys.92 757 (2018)

    ADS  Google Scholar 

  34. M K Nayak, S Shaw, V S Pandey and A J Chamkha Indian J. Phys92 1017 (2018)

    ADS  Google Scholar 

  35. M M Bhatti, A Zeeshan, D Tripathi and R Ellahi, Indian J. Phys.92 423 (2018)

    ADS  Google Scholar 

  36. A C Eringen Micro Continuum Field Theories II: FLUENT MEDIA. (New York: Springer) (2001)

    MATH  Google Scholar 

  37. A A Joneidi, D D Ganji and M Babaelahi Int. Commun. Heat Mass Transf.36 1082 (2009)

    Google Scholar 

  38. R Bhargava, L Kumar and H S Takhar Int. J. Eng. Sci.41 123 (2003)

    Google Scholar 

  39. R Nazar, N Amin, D Filip and I Pop Int. J. Non-Linear Mech.39 1227 (2004)

    Google Scholar 

  40. S K Jena and M N Mathur Int. J. Eng. Sci.19 1431 (1981)

    Google Scholar 

  41. G Ahmadi Int. J. Eng. Sci.14 639 (1976)

    Google Scholar 

  42. S J Liao Homotopy Analysis Method in Non-Linear Differential Equations (Heidelberg: Springer and Higher Education Press) (2012)

    MATH  Google Scholar 

  43. T Hayat, M I Khan, M Farooq, T Yasmeen and A Alsaedi J. Mol. Liq.220 49 (2016)

    Google Scholar 

  44. Z Abbas, M Naveed and M Sajid J. Mol. Liq.215 756 (2016)

    Google Scholar 

  45. N B Khan, Z Ibrahim, M I Khan, T Hayat and M Javed Int. J. Heat Mass Transf.121 309 (2018)

    Google Scholar 

  46. T Hayat, T Muhammad, M Mustafa and A Alsaedi J. Mol. Liq.229 541 (2017)

    Google Scholar 

  47. T Hayat, F Shah, M I Khan, M I Khan and A Alsaedi J. Mol. Liq.266 814 (2018)

    Google Scholar 

  48. S J Liao Comm. Non. Sci. Numer. Simul.15 2003 (2010)

    Google Scholar 

  49. F Rehman, M I Khan, M Sadiq and A Malook J. Mol. Liq. 231 (2017) 353–363

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Tripathi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Tripathi, R., Singh, R. et al. Three-dimensional magnetohydrodynamic flow of micropolar CNT-based nanofluid through a horizontal rotating channel: OHAM analysis. Indian J Phys 94, 319–332 (2020). https://doi.org/10.1007/s12648-019-01460-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01460-4

Keywords

PACS Nos.

Navigation