Skip to main content
Log in

Structural phase transition determined from the Bragg angle versus ionization energy plot

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We present here an unexpected relationship to predict the structural phase transition directly and unambiguously from the Bragg angle versus ionization energy plot. We first expose the changes to the F-band optical absorption energy peak in alkali halides so as to justify why the Bragg angle (2\(\theta\)) versus ionization energy plots for both anions and cations can be used to detect structural phase transition during substitutional doping or systematic changes to chemical composition. In principle, this plot can be extended to predict structural phase transition for all types of solid via doping, which includes cuprates, manganites, topological insulators and cathode materials used in lithium-ion batteries, but, unfortunately, not Fermi metals. The said plot can be implemented in all X-ray diffractometers as an additional feature to predict structural phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A D Arulsamy Ionization Energy Theory: Formalism (Seattle : CreateSpace) (2016)

    Google Scholar 

  2. A D Arulsamy Ionization Energy Theory II: Interdisciplinary Science (Seattle : CreateSpace) (2017)

    Google Scholar 

  3. W L Bragg Proc. Camb. Phil. Soc. 17 43 (1913)

    Google Scholar 

  4. A H Compton Phys. Rev. 21 483 (1923)

    ADS  Google Scholar 

  5. C V Raman Indian J. Phys. 2 387 (1928)

    Google Scholar 

  6. C V Raman and K S Krishnan Indian J. Phys. 2 399 (1928)

    Google Scholar 

  7. C V Raman and K S Krishnan Nature 121 501 (1928)

    ADS  Google Scholar 

  8. C V Raman Nature 121 619 (1928)

    ADS  Google Scholar 

  9. A D Arulsamy Indian J. Phys. https://doi.org/10.1007/s12648-019-01394-x (2019)

    ADS  Google Scholar 

  10. A D Arulsamy Phys. Scr. 94 055803 (2019)

    ADS  Google Scholar 

  11. S Pancharatnam Proc. Indian Acad. Sci. A 44 247 (1956)

    MathSciNet  Google Scholar 

  12. A D Arulsamy Optik https://doi.org/10.1016/j.ijleo.2018.11.061 (2019)

  13. J Rout and R N P Choudhary Indian J. Phys. 92 575 (2018)

    ADS  Google Scholar 

  14. R V K Mangalam and A Sundaresan J. Chem. Sci. 99 118 (2006)

    Google Scholar 

  15. U Farid, H U Khan, M Avdeev, S Injac, J. Solid State Chem. 258 118 (2018)

    Google Scholar 

  16. A Jafari, S F Shayesteh, Indian J. Phys. 89 551 (2015)

    ADS  Google Scholar 

  17. W B Aribia, M Abdelmouleh, J. Chem. Sci. 124 403 (2012)

    Google Scholar 

  18. S Raju and E Mohandas J. Chem. Sci. 122 83 (2010)

    Google Scholar 

  19. R M Sebastian and E M Mohammed Indian J. Phys. 90 1397 (2016)

    ADS  Google Scholar 

  20. D S V Thampi, J. Solid State Chem. 255 121 (2017)

    ADS  Google Scholar 

  21. C Xing, J Li, H Chen, H Qiao, J Yang, H Dong, H Sun, J Wang, X Yin, Z M Qi and F Shi RSC Adv. 7 35305 (2017)

    Google Scholar 

  22. H Qiao, H Sun, J Li, H Chen, C Xing, J Yang, H Dong, J Wang, X Yin, Z M Qi and F Shi Scientific Rep. 7 13336 (2017)

    ADS  Google Scholar 

  23. D Roy, S Mandal, C K De, Phys. Chem. Chem. Phys. 20 13336 (2018)

    Google Scholar 

  24. W B H Othmen, Mater. Sci. Semicond. Process. 52 46 (2016)

    Google Scholar 

  25. W Li, X Wu, J Chen, Y Gong, Sens. Actuat. B 253 144 (2017)

    Google Scholar 

  26. B Sambandam, T Muthukumar, S Arumugam, P L Paulose and P T Manoharan RSC Adv. 4 22141 (2014)

    Google Scholar 

  27. A N Radhakrishnan, P P Rao, S K Mahesh, Inorg. Chem. 51 2409 (2012)

    Google Scholar 

  28. B Sambandam, S E Muthu, S Arumugam and P T Manoharan RSC Adv. 3 5184 (2013)

    Google Scholar 

  29. D S V Thampi, P P Rao and A N Radhakrishnan RSC Adv. 4 12321 (2014)

    Google Scholar 

  30. S Kaniyankandy, J. Mater. Chem. C1 2755 (2013)

    Google Scholar 

  31. A Ricci, N Poccia, J. Supercond. Nov. Magn. 24 1201 (2011)

    Google Scholar 

  32. S Margadonna, Y Takabayashi, M T McDonald, M Brunelli, G Wu, R H Liu, Phys. Rev. B79 014503 (2009)

    ADS  Google Scholar 

  33. M Calamiotou, D Lampakis, N D Zhigadlo, S Katrych, J Karpinski, A Fitch, P Tsiaklagkanos and E Liarokapis, Phys. C: Supercond. Appl.527 55 (2015)

    ADS  Google Scholar 

  34. N V Chandra Shekar, V Kathirvel and P Ch Sahu Indian J. Phys. 84 485 (2010)

    ADS  Google Scholar 

  35. F Oumelaz, O Nemiri, A Boumaza, S Ghemid, H Meradji, Indian J. Phys. 92 705 (2017)

    ADS  Google Scholar 

  36. R A Cowley and S M Shapiro J. Phys. Soc. Jpn.75 111001 (2006)

    ADS  Google Scholar 

  37. F Jona and G Shirane Ferroelectric Crystals (Oxford : Pergamon Press) (1962)

    Google Scholar 

  38. G Shirane Rev. Mod. Phys. 45 437 (1974)

    ADS  Google Scholar 

  39. M Fujimoto The Physics of Structural Phase Transitions (Berlin : Springer) (2005)

    MATH  Google Scholar 

  40. D Saritha J. Chem. Sci. 130 7 (2018)

    Google Scholar 

  41. S R S Prabaharan, Electrochem. Solid-State Lett. 7 A416 (2004)

    Google Scholar 

  42. K M Begam, M S Michael, Electrochem. Solid-State Lett. 7 A242 (2004)

    Google Scholar 

  43. K M Begam and S R S Prabaharan J. Power Sources 159 319 (2006)

    ADS  Google Scholar 

  44. A Manthiram and J B Goodenough J. Power Sources 26 403 (1989)

    ADS  Google Scholar 

  45. S R S Prabaharan, M S Michael, J. Electroanal. Chem. 570 107 (2004)

    Google Scholar 

  46. C Kittel Introduction to Solid State Physics (New York : Wiley) (1976)

    MATH  Google Scholar 

  47. J H Schulman and W D Compton Color Centers in Solids (Oxford : Pergamon) (1962)

    Google Scholar 

  48. A I Popov, Nucl. Instr. Meth. B 268 3084 (2010)

    ADS  Google Scholar 

  49. M P Tosi Solid State Phys. 16 1 (1964)

    Google Scholar 

  50. L Frevel Ind. Eng. Chem. Anal. Ed. 14 687 (1942)

    Google Scholar 

  51. R K Dowson and D Poole Phys. Status Solidi 35 95 (1969)

    Google Scholar 

  52. E A Kotomin and A I Popov Nucl. Instr. Meth. B 141 1998 (1998)

    Google Scholar 

  53. R Pandey, J. Mater. Res. 3 1362 (1988)

    ADS  Google Scholar 

  54. N Gemechu and T Abebe Ukr. J. Phys. 63 182 (2018)

    Google Scholar 

  55. P Sritowong, Ukr. J. Phys. 63 276 (2018)

    Google Scholar 

  56. Y Wang, J Xiao, H Zhu, Y Li, Y Alsaid, K Y Fong, Y Zhou, S Wang, W Shi, Y Wang, A Zettl, E J Reed and X Zhang Nature 550 487 (2017)

    ADS  Google Scholar 

  57. D B Sirdeshmukh, L Sirdeshmukh and K G Subhadra Alkali Halides: A Handbook of Physical Properties (Berlin : Springer) (2001)

    Google Scholar 

  58. A D Arulsamy RSC Adv. 6 109259 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Sebastiammal Savarimuthu and the late Arulsamy Innasimuthu (1941–2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A D Arulsamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arulsamy, A.D. Structural phase transition determined from the Bragg angle versus ionization energy plot. Indian J Phys 94, 391–396 (2020). https://doi.org/10.1007/s12648-019-01454-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01454-2

Keywords

PACS Nos.

Navigation