Proposition of a new geometry of the electrodes in a particular discharge

  • A. BouchikhiEmail author
Original Paper


In this paper, a new geometry of the electrodes has been proposed in a particular discharge. The discharge is sustained by a uniform source, and the argon is chosen as a test gas in our reactor. The effect of this geometry is very perceptible on the plasma region, which let this latter displace toward the electrodes. The model is based on the two moments of Boltzmann’s equation. The over-relaxation method combined to the Thomas algorithm is used to solve the transport particle equation, and the fast Fourier transform (FFT) is used to solve Poisson’s equation. Finally, the results are validated with exciting results in the literature.


Boltzmann’s equation Poisson’s equation FFT Two-dimensional geometry 


52.80.−s 52.80.Dy 52.80.Hc 52.65.-y 



Funding was provided by University of Saida Algeria.


  1. [1]
    J Lowke and K Davies J. Appl. Phys. 48 4991 (1977)ADSCrossRefGoogle Scholar
  2. [2]
    A Fiala Thesis Toulouse France N° 2059 (1995)Google Scholar
  3. [3]
    A Hamid, A Hennad and A Flitti Romanian Rep. Phys. 61 709 (2009)Google Scholar
  4. [4]
    A Bouchikhi and A Hamid Plasma Sci. Technol. 12 59 (2010)ADSCrossRefGoogle Scholar
  5. [5]
    D Guendouz, A Hamid and A Hennad Plasma Sci. Technol. 13 583 (2011)ADSCrossRefGoogle Scholar
  6. [6]
    A Bouchikhi Plasma Sci. Technol. 14 965 (2012)CrossRefGoogle Scholar
  7. [7]
    T Alili, A Bouchikhi and M Rizouga Can. J. Phys. 94 731 (2016)ADSCrossRefGoogle Scholar
  8. [8]
    R Ganter, J Ouyang, T Callegari and J P Boeuf J. Appl. Phys. 91 992 (2002)ADSCrossRefGoogle Scholar
  9. [9]
    R Ganter and M Cappelli J. Appl. Phys. 94 2145 (2003)ADSCrossRefGoogle Scholar
  10. [10]
    A Bouchikhi Plasma Sci. Technol. 19 095403 (2017)ADSCrossRefGoogle Scholar
  11. [11]
    A Bouchikhi Can. J. Phys. 96 62 (2018)ADSCrossRefGoogle Scholar
  12. [12]
    S Park and D J Economou J. Appl. Phys. 68 3904 (1990)ADSCrossRefGoogle Scholar
  13. [13]
    A L Ward J. Appl. Phys. 33 2789 (1962)ADSCrossRefGoogle Scholar
  14. [14]
    D L Scharfetter and H K Gummmel IEEE Trans. Electron Devices 16 64 (1969)ADSCrossRefGoogle Scholar
  15. [15]
    J P Boeuf J. Appl. Phys. 63 1342 (1988)ADSCrossRefGoogle Scholar
  16. [16]
    B Hechelef and A Bouchikhi Plasma Sci. Technol. 20 115401 (2018)CrossRefGoogle Scholar
  17. [17]
    J P Nougier Méthodes de calcul numérique, 2e édition Masson, Paris (1985)Google Scholar
  18. [18]
    CS267: Lecture 15 and 16, Mar 5 and 7 1996 (

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Faculty of TechnologyUniversity of SaïdaSaïdaAlgeria

Personalised recommendations