Skip to main content
Log in

3D analytical modeling and electrical characteristics analysis of gate-engineered SiO2/HfO2-stacked tri-gate TFET

  • OriginalPaper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we have incorporated the novel concept of gate material engineering in a three-dimensional tri-gate TFET structure with SiO2/HfO2-stacked gate oxide to reap the dual benefits of triple gate material and dielectric engineering in a single device. A detailed 3D analytical modeling of electrostatic potential distribution and electric field of the proposed structure is developed here solving 3D Poisson’s equation with suitable boundary conditions. Tunneling current is then extracted by integrating the band-to-band tunneling generation rate over the volume of the device. A comprehensive performance analysis of the present structure is analyzed in terms of potential profile, electric field and ON-current characteristics of the device by varying several parameters such as channel length, channel thickness, oxide thickness, applied gate and drain bias voltages. An overall performance comparison of the proposed structure with dual and single gate material equivalent tri-gate TFET structures with and without high-k gate stack is also demonstrated to explore the functional efficiency of the present structure. The results of the derived analytical model are compared with SILVACO ATLAS simulated data verifying the accuracy of our model in order to validate it for establishing the superiority of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S Bangsaruntip, G M Cohen A Majumdar Sleight J W IEEE Electron Device Lett.31 903 (2010)

    Article  ADS  Google Scholar 

  2. K K Young IEEE Trans. Electron Devices36 399 (1989)

    Article  ADS  Google Scholar 

  3. T Skotnicki, G Merckel, T Pedron IEEE Electron Device Lett.9 109 (1988)

    Article  ADS  Google Scholar 

  4. A O Adan, T Naka, A Kagisawa, H Shimizu in SOI Conf. 1998, Proceedings, 1998 IEEE International (1998), p 9

  5. P Banerjee, A Mahajan, S K Sarkar, Devices for Integrated Circuit (DevIC), 2017 (2017), p 437

  6. P Banerjee, S K Sarkar, J. Comput. Electron. 16 631 (2017)

    Article  Google Scholar 

  7. K K Bhuwalka, J Schulze, I Eisele IEEE Trans. Electron. Devices52 909 (2005)

    Article  ADS  Google Scholar 

  8. T Nirschl, J Fischer, M Fulde, A Bargagli-Stoffi, M Sterkel, J Sedlmeir, C Weber, R Heinrich, U Schaper, J Einfeld, et al Solid-State Electron. 50 44 (2006)

    Article  ADS  Google Scholar 

  9. A C Seabaugh, Q Zhang Proc IEEE98 2095 (2010)

    Article  Google Scholar 

  10. A M Ionescu, K Boucart, K E Moselund, V Pott, D Tsamados, in Semiconductor Conference, 207, CAS 2007. International, vol 2 (2007) p 397

  11. K Goplakrishnan, P B Griffin, J DPlummer, in Electron Devices Meeting. IEDM’02. International (2002) p 289

  12. H C Nathanson, W E Newell, R A Wickstrom, J R Davis IEEE Trans. Electron Devices14 117 (1967)

    Article  ADS  Google Scholar 

  13. W Y Choi, B G Park, J D Lee, T J K Liu IEEE Electron Device Lett.28 743 (2007)

    Article  ADS  Google Scholar 

  14. S B Rahi, B Ghosh, P Asthana J. Semicond. 35 114005 (2014)

    Article  ADS  Google Scholar 

  15. B Ghosh, M W Akram IEEE Electron. Device Lett. 34 584 (2013)

    Article  ADS  Google Scholar 

  16. N Patel, A Ramesha, S Mahapatra Microelectron. J. 39 1671 (2008)

    Article  Google Scholar 

  17. R Vishnoi, M J Kumar IEEE Trans. Electron Devices61 2264 (2014)

    Article  Google Scholar 

  18. D B Abdi, M J Kumar (2014) IEEE J. Electron Devices Soc. 2 187 (2014)

    Article  Google Scholar 

  19. S Kumar, E Goel, K Singh, B Singh, M Kumar, S Jit IEEE Trans. Electron Devices63 3291 (2016)

    Article  ADS  Google Scholar 

  20. S Kumar, E Goel, K Singh, B Singh, P KSingh, K Baral, S Jit IEEE Trans. Electron Devices64 960 (2017)

    Article  ADS  Google Scholar 

  21. S Kumar, K Singh, S Chander, E Goel, P K Singh, K Baral, B Singh, S Jit IEEE Trans. Electron Devices65 331 (2018)

    Article  ADS  Google Scholar 

  22. H Ghanatian, S E Hosseini, J. Comput. Electron.15 508 (2016)

    Article  Google Scholar 

  23. P Saha, S Sarkhel, S K Sarkar IEEE Tech. Rev. p 1 (2018)

  24. H Wang, S Chang, Y Hu, H He, J He, Q Huang, F He, G Wang IEEE Electron Device Lett. 35 798 (2014)

    Article  Google Scholar 

  25. E Goel, S Kumar, K Singh, B Singh, M Kumar, S Jit IEEE Trans. Electron Devices63 966 (2016)

    Article  ADS  Google Scholar 

  26. P Banerjee, S K Sarkar IEEE Trans. Electron Devices64 368 (2017)

    Article  ADS  Google Scholar 

  27. E Kane J. Phys. Chem. Solids12 181 (1960)

    Article  ADS  Google Scholar 

  28. C Schulte-Braucks, S Richter, L Knoll, L Selmi, Q-T Zhao, S Mantl in Solid State Device Research Conference (ESSDERC), 2014 44th European (IEEE, 2014) p 178

  29. R Vishnoi, M J Kumar IEEE Trans. Electron Devices61 2599 (2014)

    Article  Google Scholar 

  30. N Bagga, S Dasgupta IEEE Trans. Electron Devices 64 606 (2017)

    Article  ADS  Google Scholar 

  31. P Wu, J Zhang, L Zhang, Z Yu in Simulation of Semiconductor Processes and Devices (SISPAD), 2015 International Conference on (IEEE, 2015) p 317

  32. ATLAS: 2-D Device Simulator, SILVACO Int., Santa Clara, CA, USA 2013

  33. J Knoch, J Appenzeller in Device Research Conference Digest, 2005, DRC’05, 63rd, vol 1 (IEEE, 2005) p 153

Download references

Acknowledgements

One of the authors, Priyanka Saha thankfully acknowledges this publication as an outcome of the R&D work undertaken project under the Visvesvaraya PhD Scheme of Ministry of Electronics & Information Technology, Government of India, being implemented by Digital India Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Saha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$a_{1} = \frac{{C_{\rm ox} }}{{C_{s} t_{\rm si} }},$$
(46)
$$a_{2} = \frac{{\frac{{C_{\rm ox} }}{{C_{s} t_{\rm si} }}\left( {2 + \frac{{C_{\rm ox} }}{{C_{s} }}} \right)}}{{2t_{\rm si} + \frac{{C_{\rm ox} t_{\rm si} }}{{C_{s} }}}},$$
(47)
$$a_{3} = \frac{{4C_{\rm ox} }}{{w^{2} C_{s} t_{\rm si} }},$$
(48)
$$a_{4} = \frac{{4a_{2} }}{{w^{2} }},$$
(49)
$$a_{5} = \frac{{V_{\rm gs11} C_{\rm ox} }}{{C_{s} t_{\rm si} }},$$
(50)
$$a_{6} = \frac{{a_{1} \left[ {V_{\rm gs11} \left( {1 + \frac{{C_{\rm ox} }}{{C_{s} }}} \right) + V_{\rm sub1} } \right]}}{{2t_{\rm si} + \frac{{C_{\rm ox} t_{\rm si} }}{{C_{s} }}}},$$
(51)
$$a_{7} = \frac{{4a_{5} }}{{w^{2} }},$$
(52)
$$a_{8} = \frac{{4a_{6} }}{{w^{2} }},$$
(53)
$$a_{5}^{\prime} = \frac{{V_{\rm gs12} C_{\rm ox} }}{{C_{s} t_{\rm si} }},$$
(54)
$$a_{6}^{\prime} = \frac{{a_{1} \left[ {V_{\rm gs12} \left( {1 + \frac{{C_{\rm ox} }}{{C_{s} }}} \right) + V_{\rm sub2} } \right]}}{{2t_{\rm si} + \frac{{C_{\rm ox} t_{\rm si} }}{{C_{s} }}}},$$
(55)
$$a_{7}^{\prime} = \frac{{4a_{5}^{\prime} }}{{w^{2} }},$$
(56)
$$a_{8}^{\prime} = \frac{{4a_{6}^{\prime} }}{{w^{2} }},$$
(57)
$$a_{5}^{\prime\prime} = \frac{{V_{\rm gs13} C_{\rm ox} }}{{C_{s} t_{\rm si} }},$$
(58)
$$a_{6}^{\prime\prime} = \frac{{a_{1} \left[ {V_{\rm gs13} \left( {1 + \frac{{C_{\rm ox} }}{{C_{s} }}} \right) + V_{\rm sub3} } \right]}}{{2t_{\rm si} + \frac{{C_{\rm ox} t_{\rm si} }}{{C_{s} }}}},$$
(59)
$$a_{7}^{\prime\prime} = \frac{{4a_{5}^{\prime\prime} }}{{w^{2} }},$$
(60)
$$a_{8}^{\prime\prime} = \frac{{4a_{6}^{\prime\prime} }}{{w^{2} }},$$
(61)
$$M = \frac{2P + R - O}{{2e^{{\lambda_{1} L_{1} }} }},$$
(62)
$$N = V_{\rm bip} - O - M,$$
(63)
$$P = \frac{2S + U - R}{{2e^{{\lambda_{2} L_{2} }} }},$$
(64)
$$Q = Me^{{\lambda_{1} L_{1} }} + Ne^{{ - \lambda_{1} L_{1} }} + O - P - R,$$
(65)
$$S = \eta e^{{\lambda_{3} L_{3} }} - Ue^{{\lambda_{3} L_{3} }} - Te^{{\lambda_{3} L_{3} }} ,$$
(66)
$$T = Pe^{{\lambda_{2} L_{2} }} + Qe^{{ - \lambda_{2} L_{2} }} + R - S - U.$$
(67)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, D.K., Saha, P., Mahajan, A. et al. 3D analytical modeling and electrical characteristics analysis of gate-engineered SiO2/HfO2-stacked tri-gate TFET. Indian J Phys 94, 219–232 (2020). https://doi.org/10.1007/s12648-019-01446-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01446-2

Keywords

PACS No.

Navigation