Skip to main content
Log in

Laser-induced damage threshold study on TiO2/SiO2 multilayer reflective coatings

  • OriginalPaper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Laser-induced damage threshold (LIDT) is a key parameter in high power laser systems. Highly reflective mirrors are made by the combination of high index and low index dielectric thin films of materials, usually oxides, having high damage threshold. The aim of the present investigation was to study the effect of multilayers on LIDT for a combination of high and low index material films with the increase in the number of layers. Firstly, we chose a combination of relatively high damage threshold high index (H) and low index (L) oxide materials, like TiO2 and SiO2. Then, we chose five reflective samples with increasing the number of layers starting with a TiO2 single quarter wave optical thick (QWOT) layer, three-QWOT layer (HL)1H, five-QWOT layer (HL)2H, seven-all QWOT layer (HL)3H and seven-layer (HL)2H 1.6L0.4H with upper two non-quarter layers for sample preparation using electron beam deposition. It has been found that LIDT measured at 1064 nm for single layer is large (2.09 J/cm2), decreases for three layers and remains nearly constant (1.51 J/cm2) as the number of multilayers increases further. When LIDT is measured at 532 nm, LIDT of the single layer and multilayers remains almost the same. However, in case of top two layers made of non-QWOT in seven-layer design the LIDT of the samples in both the cases improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D Ristau, M Jupen and K Starke Thin Solid Films518 1607 (2009)

    Article  ADS  Google Scholar 

  2. J Yao, J Ma, C Xiu, Z Fan, Y Jin, Y Zhao et al. J. Appl. Phys.103 083103 (2008)

    Article  ADS  Google Scholar 

  3. Y Jian, J Yun, Z Yuan, H Hong, S Jian and F Zheng Chin. Phys. Lett.24 2606 (2007)

    Article  ADS  Google Scholar 

  4. R M Wood Laser-induced damage of optical material Inst. Phys.0 7503 0845 1 54 (2003)

  5. J Yao, Z Fan, Y Jin, Y Zhao, H He and J Shao Thin Solid Films516 1237 (2007)

    Article  ADS  Google Scholar 

  6. K Yoshida and N Umemura Proc. SPIE Int. Soc. Opt. Eng.164 3244 (1998)

    Google Scholar 

  7. B Stuart, M Feit, S Herman, A Rubenchik, B Shore and M Perry Phys. Rev. Lett.74 2248 (1995)

    Article  ADS  Google Scholar 

  8. J Yao, H Li, Z Fan, Y Tang, Y Jin, Y Zhao et al. Chin. Phys. Lett.24 1964 (2007)

    Article  ADS  Google Scholar 

  9. K N Rao Opt. Eng.41 2357 (2002)

    Article  ADS  Google Scholar 

  10. J Yao, Z Fan, H He and J Shao Chin. Opt. Lett.5556 (2007)

  11. H Jiao, T Ding and Q Zhang Opt. Express19 4059 (2011)

    Article  ADS  Google Scholar 

  12. S Kumar, Kamal, A Shankar, N Kishore J. Integr. Sci. Technol.55 (2017)

  13. S Chen, M Zhu, D Li, H He, Y Zhao, J Shao et al. Proc. SPIE7842 (2010)

  14. J H Apfel Appl. Opt.16 1880 (1977)

    Article  ADS  Google Scholar 

  15. V Conta Bachelor thesis Faculty of Precision and Micro Engineering/Engineering Physics University Munich Germany (2010)

  16. J Yao, Z Fan, Y Jin, Y Zhao, H He and J Shao J. Appl. Phys.102 063105 (2007)

    Article  ADS  Google Scholar 

  17. A Taherniya and D Raoufi Semicond. Sci. Technol.31 125012 (2016)

    Article  ADS  Google Scholar 

  18. J D Paul Whiteside, J A Chininis and H K Hunt Coat. MDPI6 35 (2016)

    Google Scholar 

  19. The Manual of the Reflectivity Tool, Parratt 32, ETH Zurich

  20. C K Saw, W K Grant, J Stanford, L N Dinh LLNL-TR680742 (2016)

  21. J Tauc Mater. Res. Bull.3 37 (2007)

    Article  Google Scholar 

  22. G Govindasamy, P Murugasen and S Sagadevan Mater. Res.19 413 (2016)

    Article  Google Scholar 

  23. http://www.sun-way.com.tw/Files/DownloadFile/Ellipsometry_basics.pdf.

  24. Guide to using WVASE spectroscopic ellipsometry data Acquisition and Analysis software J A Woollam Co. Inc. Lincoln NE 68508

  25. S Kohli, C D Rithner and P K Dorhout Rev. Sci. Instrum.76 023906 (2005)

    Article  ADS  Google Scholar 

  26. H Jiao, X Cheng, J Lu, G Bao, Y Liu, B Ma et al. Appl. Opt.50 C309 (2011)

    Article  Google Scholar 

  27. C Xu, Y Qiang, Y Zhu, J Shao, Z Fan J. Optoelectron. Adv. Mater. 11 863 (2009)

    Google Scholar 

  28. H Jiao, T Ding and Q Zhang Opt. Express19 4059 (2011)

    Article  ADS  Google Scholar 

  29. G Abromavicius, R Buzelis, R Drazdys, A Melninkaitis and V Sirutkaitis Proc. SPIE6720 67200Y (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported financially by University Grant Commission, New Delhi, under Basic Science Research (BSR) fellowship. The authors thank Ashok Bhakar, RRCAT Indore and M/s Light Guide Optics for allowing us to use their deposition facility. Funding was provided by UGC-BSR (Grant No. 7-179/2007(BSR)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Shankar, A., Kishore, N. et al. Laser-induced damage threshold study on TiO2/SiO2 multilayer reflective coatings. Indian J Phys 94, 105–115 (2020). https://doi.org/10.1007/s12648-019-01445-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01445-3

Keywords

PACS Nos.

Navigation