Advertisement

Some new families of spiky solitary waves of one-dimensional higher-order K-dV equation with power law nonlinearity in plasma physics

  • Aly R. SeadawyEmail author
  • Nadia CheemaaEmail author
OriginalPaper
  • 15 Downloads

Abstract

In this article, we studied analytically the propagation of spiky solitary waves model by higher-order nonlinear one-dimensional K-dV equation arising in plasma physics. By using auxiliary equation mapping method, we found a series of more general and new families of solutions. These solutions are more powerful in the development of soliton dynamics, quantum plasma, adiabatic parameter dynamics, biomedical problems, fluid dynamics, industrial studies, and many other fields. The calculations are more reliable, straightforward, and effective to study analytically other nonlinear complicated physical problems. We have expressed our solutions graphically with the help of Mathematica 10.4 to understand physically the behavior of different shapes of solitary waves including kink type, anti-kink type, half bright and dark soliton.

Keywords

Auxiliary equation mapping method K-dV equation Ion-acoustic solitary waves Graphical representation 

PACS Nos.

02.30.Jr 05.45.Yv 47.10.A 47.35.+i 47.35.Fg 

Notes

Acknowledgements

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. [1]
    C S Gardener, J M Green, M D Kruskal and R M Miura Phys. Rev. Lett. 19 1095 (1967)ADSCrossRefGoogle Scholar
  2. [2]
    H Schamel Plasma Phys. 14 905 (1972)ADSCrossRefGoogle Scholar
  3. [3]
    H Schamel J. Plasma Phys. 9 377 (1973)ADSCrossRefGoogle Scholar
  4. [4]
    Z Horii Phys. Lett. A 306 45 (2002)ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    L P Zhang and J K Xue Chaos Solitons Fractals 23 543 (2005)ADSCrossRefGoogle Scholar
  6. [6]
    R M EL-Shiekh Math. Methods Appl. Sci. 36 1 (2012)MathSciNetCrossRefGoogle Scholar
  7. [7]
    Y Nejoh J. Phys. A 23 1973 (1990)ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    G C Das and K M Sen Contrib. Plasma Phys. 31 647 (1991)ADSCrossRefGoogle Scholar
  9. [9]
    G C Das and K M Sen Planet. Space Sci. 42 41 (1994)ADSCrossRefGoogle Scholar
  10. [10]
    F Verheet and W Hereman Phys. Scri. 50 611 (1994)ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    F Kangalgil J. Egypt. Math. Soc. 24 526 (2016)MathSciNetCrossRefGoogle Scholar
  12. [12]
    A R Seadawy Math. Methods Appl. Sci. 40 1598 (2017)CrossRefGoogle Scholar
  13. [13]
    Z Liu and C Yang J. Math. Anal. Appl. 275 1 (2002)MathSciNetCrossRefGoogle Scholar
  14. [14]
    A H Khater, M M Hassan and R S Temsah Math. Comput. Simul. 70 221 (2005)MathSciNetCrossRefGoogle Scholar
  15. [15]
    A R Seadawy Physica A 439 124 (2015)MathSciNetCrossRefGoogle Scholar
  16. [16]
    R Shahein and A seadawy Indian J. Phys. 93 1-9 (2019)ADSCrossRefGoogle Scholar
  17. [17]
    A seadawy, D Lu and M Arshad Indian J. Phys. 93 1–11 (2019)ADSCrossRefGoogle Scholar
  18. [18]
    R Ali, A Saha and P Chatterjee Indian J. Phys. 91 689 (2017)ADSCrossRefGoogle Scholar
  19. [19]
    A R Seadawy and D Lu Results Phys. 6 590 (2016)ADSCrossRefGoogle Scholar
  20. [20]
    A R Seadawy Physica A 455 44 (2016)MathSciNetCrossRefGoogle Scholar
  21. [21]
    A R Seadawy and S Z Alamri Results Phys. 8 286 (2018)ADSCrossRefGoogle Scholar
  22. [22]
    A R Seadawy and K El-Rashidy Math. Comput. Model. 57 13 (2013)CrossRefGoogle Scholar
  23. [23]
    A R Seadawy Appl. Math. Lett. 25 687 (2012)MathSciNetCrossRefGoogle Scholar
  24. [24]
    M Arshad, A R Seadawy, D Lu and J Wang Chin. J. Phys. 55 780 (2017)CrossRefGoogle Scholar
  25. [25]
    H A Ghany and A Fathallah Int. J. Pure Appl. Math. 78 17 (2012)Google Scholar
  26. [26]
    M Arshad, A R Seadawy and D Lu Optik 138 40 (2017)ADSCrossRefGoogle Scholar
  27. [27]
    A Ali, A R Seadawy and D Lu Optik 145 79 (2017)ADSCrossRefGoogle Scholar
  28. [28]
    D Lu, A R Seadawy, M Arshad and J Wang Results Phys. 7 899 (2017)ADSCrossRefGoogle Scholar
  29. [29]
    M Arshad, A R Seadawy, D Lu and J Wang Results Phys. 6 1136 (2016)ADSCrossRefGoogle Scholar
  30. [30]
    H Naher, F A Abdullah, M A Akbar and A Yildirim World Appl. Sci. J. 25 543 (2013)Google Scholar
  31. [31]
    M Wang Phys. Lett. A 213 279 (1996)ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    H Naher and F A Abdullah J. Egypt. Math. Soc. (2013)Google Scholar
  33. [33]
    M Usman, T Zubair, I Rashid and S T Mohyud-DinInt. J. Mod. Math. Sci. 6 33 (2013)Google Scholar
  34. [34]
    Z U A Zafar Int. J. Adv. Eng. Glob. Technol. 1 3 (2013)Google Scholar
  35. [35]
    A R Seadawy Comput. Math. Appl. (2015)Google Scholar
  36. [36]
    A R Seadawya, D Lu and C Yue J. Taibah Univ. Sci. (2016)Google Scholar
  37. [37]
    A R Seadawy and K El-Rashidy Math. Comput. Model. 57 1371 (2013)MathSciNetCrossRefGoogle Scholar
  38. [38]
    A Seadawy Appl. Math. Inf. Sci. 10 209 (2016)CrossRefGoogle Scholar
  39. [39]
    M. Eslami Nonlinear Dyn. 85 813–816 (2016)MathSciNetCrossRefGoogle Scholar
  40. [40]
    M Eslami, H Rezazadeh, M Rezazadeh and S S Mosavi, Opt. Quantum Electron. 49 279 (2017)CrossRefGoogle Scholar
  41. [41]
    M Eslami, F Samsami, K F Nazari and H Rezazadeh Opt. Quantum Electron. 49 391 (2017)CrossRefGoogle Scholar
  42. [42]
    M Eslami, B F Vajargah, M Mirzazadeh and A Biswas Indian J. Phys. 88 177 (2014)ADSCrossRefGoogle Scholar
  43. [43]
    M. Eslami and M. Mirzazadeh Ocean Eng. 83 133–137 (2014)CrossRefGoogle Scholar
  44. [44]
    M Eslami and H Rezazadeh Calcolo 53 475–485 (2016)MathSciNetCrossRefGoogle Scholar
  45. [45]
    H Rezazadeh, A Korkmaz, M Eslami, J Vahidi and R Asghari Opt. Quantum Electron. 50 150 (2018)CrossRefGoogle Scholar
  46. [46]
    M Eslami and A Neirameh Opt. Quantum Electron. 50 47 (2018)CrossRefGoogle Scholar
  47. [47]
    S-F Tian J. Differ. Equ. 262 506–558 (2017)ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    S-F Tian Commun. Pure Appl. Anal. 17 923–957 (2018)MathSciNetGoogle Scholar
  49. [49]
    X-W Yan, S-F Tian, M-J Dong, X-B Wang and T-T Zhang Z. Naturforsch. A 73 399–405 (2018)ADSGoogle Scholar
  50. [50]
    C-Y Qin, S-F Tian, X-B Wang, T-T Zhang and J Li Comput. Math. Appl. 75 4221–4231 (2018)MathSciNetCrossRefGoogle Scholar
  51. [51]
    L-L Feng and T-T Zhang Appl. Math. Lett. 78 133–140 (2018)MathSciNetCrossRefGoogle Scholar
  52. [52]
    X-B Wang, S-F Tian, C-Y Qin and T-T Zhang Appl. Math. Lett. 72 58–64 (2017)MathSciNetCrossRefGoogle Scholar
  53. [53]
    X-B Wang, S-F Tian and T-T Zhang Proc. Am. Math. Soc. 146 3353–3365 (2018)MathSciNetCrossRefGoogle Scholar
  54. [54]
    M-J Dong, S-F Tian, X-W Yan and L Zou Comput. Math. Appl. 75 957–964 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceTaibah UniversityAl-Madinah Al-MunawarahSaudi Arabia
  2. 2.Mathematics Department, Faculty of ScienceBeni-Suef UniversityBeni SuefEgypt
  3. 3.Department of MathematicsHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations